精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的奇函数f(x),当x∈(﹣∞,0)时,f(x)=﹣x2+mx﹣1.
(1)当x∈(0,+∞)时,求f(x)的解析式;
(2)若方程f(x)=0有五个不相等的实数解,求实数m的取值范围.

【答案】
(1)解:设x>0,则﹣x<0,∴f(﹣x)=﹣x2﹣mx﹣1

又f(x)为奇函数,即f(﹣x)=﹣f(x),

所以,f(x)=x2+mx+1(x>0),

又f(0)=0,

所以


(2)解:因为f(x)为奇函数,所以函数y=f(x)的图象关于原点对称,

由方程f(x)=0有五个不相等的实数解,得y=f(x)的图象与x轴有五个不同的交点,

又f(0)=0,所以f(x)=x2+mx+1(x>0)的图象与x轴正半轴有两个不同的交点,

即,方程x2+mx+1=0有两个不等正根,记两根分别为x1,x2

所以,所求实数m的取值范围是m<﹣2


【解析】(1)先根据f(x)是定义在R上的奇函数,判断f(0)=0,再根据当x<0时,f(x)=﹣f(﹣x)根据x,0时,f(x)=﹣x2+mx﹣1得到x>0时函数的解析式,最后综合即可得到答案.(2)由方程f(x)=0有五个不相等的实数解,得y=f(x)的图象与x轴有五个不同的交点,又f(0)=0,所以f(x)=x2+mx+1(x>0)的图象与x轴正半轴有两个不同的交点即,方程x2+mx+1=0有两个不等正根,记两根分别为x1 , x2得出关于m的不等关系,从而求得实数m的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列有关结论正确的个数为( )

①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件=“4个人去的景点不相同”,事件 “小赵独自去一个景点”,则

②设函数存在导数且满足,则曲线在点处的切线斜率为-1;

③设随机变量服从正态分布,若,则的值分别为

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,(a>0).
(1)当a=2时,证明函数f(x)不是奇函数;
(2)判断函数f(x)的单调性,并利用函数单调性的定义给出证明;
(3)若f(x)是奇函数,且f(x)﹣x2+4x≥m在x∈[﹣2,2]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为D的函数y=f(x),如果存在区间[m,n]D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“和谐区间”.
(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.
(2)求证:函数 不存在“和谐区间”.
(3)已知:函数 (a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)讨论函数上的单调性;

(II)设函数存在两个极值点,并记作,若,求正数的取值范围;

(III)求证:当=1时, (其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 与椭圆 有且只有一个公共点

I)求椭圆C的标准方程;

II)若直线 CAB两点,且PAPB,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x=1处的切线与直线平行。

(Ⅰ)求a的值并讨论函数y=f(x)上的单调性。

(Ⅱ)若函数 (为常数)有两个零点

(1)m的取值范围;

(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒多赚0.5元;如果当天未能按量完成任务,则按完成的雕刻量领取当天工资.

(Ⅰ)求雕刻师当天收入(单位:元)关于雕刻量(单位:粒, )的函数解析式

(Ⅱ)该雕刻师记录了过去10天每天的雕刻量(单位:粒),整理得下表:

雕刻量

210

230

250

270

300

频数

1

2

3

3

1

以10天记录的各雕刻量的频率作为各雕刻量发生的概率.

(ⅰ)求该雕刻师这10天的平均收入; 

(ⅱ)求该雕刻师当天的收入不低于300元的概率.

查看答案和解析>>

同步练习册答案