精英家教网 > 高中数学 > 题目详情
19.已知二次函数f(x)=ax2+bx+c(a>0)
(1)若c>0,f(x)图象与x轴有两个不同的公共点,且f(c)=0,并且但0<x<c时,f(x)>0试比较$\frac{1}{a}$与c的大小,并说明理由
(2)若x∈[-2,-1]且函数f(x)在x=-1处取得最大值0,求$\frac{{b}^{2}-2ac}{ab-{a}^{2}}$的最小值.

分析 (1)由题意得c、$\frac{1}{a}$是方程f(x)=0的两个根,欲比较$\frac{1}{a}$与c的大小,利用反证法去证明$\frac{1}{a}$<c不可能,从而得到$\frac{1}{a}$>c;
(2)由题意求出$\frac{c}{a}$≥2,$\frac{{b}^{2}-2ac}{ab-{a}^{2}}$=$\frac{a}{c}$+$\frac{c}{a}$≥$\frac{5}{2}$.问题得以解决.

解答 解:(1)∵f(x)的图象与x轴有两个不同的交点,
∴f(x)=0有两个不同的实数根x1,x2
∵f(c)=0,∴c是方程f(x)=0的一个根,
不妨设x1=c,
∵x1x2=$\frac{c}{a}$,∴x2=$\frac{1}{a}$($\frac{1}{a}$≠c),
假设$\frac{1}{a}$<c,又$\frac{1}{a}$>0,由0<x<c时,f(x)>0,
得f($\frac{1}{a}$)>0,与已知f($\frac{1}{a}$)=0矛盾,
∴$\frac{1}{a}$>c.
(2)∵函数f(x)在x=-1处取得最大值0,则f(-1)=a-b+c=0可知b=a+c,-$\frac{b}{2a}$≤-$\frac{3}{2}$,
∴-$\frac{a+c}{2a}$≤-$\frac{3}{2}$,
解得$\frac{c}{a}$≥2,
∴$\frac{{b}^{2}-2ac}{ab-{a}^{2}}$=$\frac{(a+c)^{2}-2ac}{a(a+c)-{a}^{2}}$=$\frac{a}{c}$+$\frac{c}{a}$≥$\frac{5}{2}$.
∴$\frac{{b}^{2}-2ac}{ab-{a}^{2}}$的最小值为$\frac{5}{2}$.

点评 本题考查了利用反证法证明不等式,以及二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设m,n是自然数,条件甲:m3+n3是偶数;条件乙:m-n是偶数,则甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若(3-2a)${\;}^{-\frac{2}{3}}$>a${\;}^{-\frac{2}{3}}$,则实数a的取值范围是(1,$\frac{3}{2}$)∪($\frac{3}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设全集U=R,A={x∈R|a≤x≤3a-1},B={x∈R|3x2-8x+4≤0}.
(1)若a=1,求(∁UA)∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=cos(\frac{π}{2}-x)cosx+\sqrt{3}{sin^2}x$
(Ⅰ)求f(x)的最小正周期及单调递减区间;
(Ⅱ)求$x∈[\frac{π}{6},\frac{π}{2}]$时函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组表示同一函数的是(  )
A.y=x(x∈R)与y=x(x∈N)B.$y=\sqrt{x^2}$与$y={({\sqrt{x}})^2}$C.y=1+$\frac{1}{x}$与u=1+$\frac{1}{v}$D.y=x与$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解不等式:
(1)lg(x-1)<1;
(2)a2x-7>a4x-1(a>0,且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数$y={log_2}(-{x^2}+4x+32)$的定义域为集合A,函数g(x)=2x-a,x∈(-∞,2)的值域为集合B
(1)求集合A、B;
(2)若集合A、B满足A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中真命题的个数是(  )
①函数f(x)=$\frac{1}{x}$在定义域内单调递减;
②命题“?x0∈R.x02-x0+1<0”的否定是“?x∈R,x2-x+1≥0”;
③已知m为实数,直线l1:mx+y+3=0,直线l2(3m-2)x+my+4=0,则m=1是两直线互相平行的必要不充分条件;
④关于x的一元二次方程x2-2ax+4=0的一个根大于1.-个根小于1,则实数a的取值范围是a∈($\frac{5}{2}$,+∞)
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案