精英家教网 > 高中数学 > 题目详情
4.小波用流程图把早上上班前需要做的事情做了如图方案,则所用时间最少是(  )
A.22分钟B.26分钟C.28分钟D.32分钟

分析 根据题干,起床穿衣-煮粥-吃早餐,同时完成其他事情共需28分钟,由此即可解答问题.

解答 解:根据题干分析,要使所用的时间最少,可设计如下:
起床穿衣-煮粥-吃早餐
8+13+7=28(分钟),
故选:C.

点评 此题属于合理安排时间问题,奔着既节约时间又不使每道工序相互矛盾即可解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设集合A={(x,y)|y=x2-1},B={(x,y)|y=3x-3},则A∩B={(1,0),(2,3)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且椭圆的短轴长为2.
(1)若P是该椭圆上的一个动点,求函数z=x2+y2-3的最值,并指出取得最值时,点P的位置;
(2)过定点M(0,2)的直线l与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,b=3,c=8$\sqrt{3}$,∠A=$\frac{π}{6}$,则S△ABC=(  )
A.12$\sqrt{3}$B.6$\sqrt{3}$C.36D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}满足:a1=a2=1,an+2=an+1+an,n∈N*,则使an>100的n的最小值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.编写程序,将用户输入的正整数转换成相应的星期值输出.如用户输入3,则输出Wednesday;用户输入0,则输出Sunday,如果用户输入的数大于6,则用这个数除以7所得的余数进行上述操作.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(4,1)
(1)若$\overrightarrow{a}$+k$\overrightarrow{c}$∥2$\overrightarrow{b}$-$\overrightarrow{a}$,求实数k;
(2)若$\overrightarrow{d}$=(x,y),($\overrightarrow{d}$-$\overrightarrow{c}$)∥($\overrightarrow{a}$+$\overrightarrow{b}$),且|$\overrightarrow{d}$-$\overrightarrow{c}$|=1,求$\overrightarrow{d}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出如下命题:①$\int_0^2{{{(x-1)}^5}}$dx=0;②$\int_{-1}^0{\sqrt{1-{x^2}}}dx=\frac{π}{4}$;③曲线y=sinx,x∈[0,2π]与直线y=0围成的两个封闭区域的面积之和为$\int_0^{2π}{sinx}$dx.其中真命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知{an}是首项为1的等比数列,Sn是an的前n项和,且$\frac{{S}_{4}}{{S}_{8}}$=$\frac{1}{17}$,则{$\frac{1}{{a}_{n}}$}前5项和是$\frac{31}{16}$或$\frac{11}{16}$.

查看答案和解析>>

同步练习册答案