精英家教网 > 高中数学 > 题目详情
18.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-2,0),f(x)=2x+$\frac{1}{2}$,则f(2013)=(  )
A.-1B.0C.1D.±1

分析 由f(-x)=-f(x),f(x-2)=f(x+2),得到函数为奇函数且函数为周期为4的函数,利用函数的奇偶性和周期性进行转化即可.

解答 解:∵f(-x)=-f(x),
∴函数是奇函数,
∵f(x-2)=f(x+2),
∴f(x)=f(x+4)
即函数f(x)是周期为4的周期函数,
则f(2013)=f(503×4+1)=f(1)=-f(-1)
∵x∈(-2,0),f(x)=2x+$\frac{1}{2}$,
∴f(-1)=$\frac{1}{2}$+$\frac{1}{2}$=1,
则f(2013)=-f(-1)=-1,
故选:A.

点评 本题主要考查函数值的计算,利用函数奇偶性和周期性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.某城市的一段路上装有5盏路灯,已知每盏路灯使用寿命在一年以上的概率是$\frac{2}{3}$,则一年后至少换一盏灯的概率是$\frac{211}{243}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果函数f(x)是实数集R上的增函数,a是实数,则(  )
A.f(a2)>f(a+1)B.f(a)<f(3a)C.f(a2+a)>f(a2D.f(a2-1)<f(a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在计算从1开始公差为1的等差数列时,不小心漏掉了一个数字,所得结果为210,漏掉的数字是21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若不等式ax2-2x+1<0对[-2,2]的所有a都成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:sin50°(1+$\sqrt{3}$tan10°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.无穷数列{an}满足an+1=$\frac{{a}_{n}-\sqrt{2}+1}{1+(\sqrt{2}-1){a}_{n}}$.证明{an}是周期列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在数列{an}中,a1=1,a2=2,an+2=an+2n,则an=$\left\{\begin{array}{l}{\frac{1}{2}(n-1)^{2}+1,}&{n为奇数}\\{\frac{1}{2}{(n-1)}^{2}+\frac{3}{2},}&{n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的前n项和为Sn,且$\frac{{S}_{3}}{3}$-$\frac{{S}_{2}}{2}$=1,a5和a7的等差中项为13
(1)求an及Sn
(2)令bn=$\frac{4}{{a}_{n}^{2}-1}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案