精英家教网 > 高中数学 > 题目详情

证明函数f(x)=x+在(0,1)上是减函数.

根据函数单调性的定义法,设出任意两个变量,得到对应的函数值的差,定号,下结论。

解析试题分析:证明:(1)设0<x1<x2<1,则x2-x1>0,
f(x2)-f(x1)=(x2)-(x1)
=(x2-x1)+()=(x2-x1)+
=(x2-x1)(1-)=
若0<x1<x2<1,则x1x2-1<0,
故f(x2)-f(x1)<0,∴f(x2)<f(x1).
∴f(x)=x+在(0,1)上是减函数.
考点:函数的单调性
点评:证明函数的单调性一般运用定义法来加以证明,作差变形,定号,下结论。属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,函数
(1)求的极小值;
(2)若上为单调增函数,求的取值范围;
(3)设,若在是自然对数的底数)上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (a>0,且a≠1),=.
(1)函数的图象恒过定点A,求A点坐标;
(2)若函数的图像过点(2,),证明:函数(1,2)上有唯一的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若a=,求f(x)的单调区间;
(Ⅱ)若当≥0时f(x)≥0,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为[0,1]的函数同时满足以下三个条件:①对任意,总有;②;③若,则有成立.
(1) 求的值;(2) 函数在区间[0,1]上是否同时适合①②③?并予以证明
(3) 假定存在,使得,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试分别解答以下两小题.
(ⅰ)若不等式对任意的恒成立,求实数的取值范围;
(ⅱ)若是两个不相等的正数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 ,且能表示成一个奇函数和一个偶函数的和.
(1)求的解析式.
(2)命题:函数在区间上是增函数;命题:函数是减函数,如果命题有且仅有一个是真命题,求实数的取值范围.
(3)在(2)的条件下,比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(I)求函数的单调区间;
(Ⅱ)若恒成立,试确定实数k的取值范围;
(Ⅲ)证明:

查看答案和解析>>

同步练习册答案