精英家教网 > 高中数学 > 题目详情

【题目】已知在中,角的对边分别是且有.

1)求

(2)若面积的最大值.

【答案】(1) ;(2) .

【解析】试题分析:(Ⅰ)已知等式利用正弦定理化简,利用两角和与差的正弦函数公式及诱导公式,结合sinC不为0求出cosC的值,即可确定出C的度数;

(2)利用余弦定理列出关系式,结合不等式可得ab≤9进而求得面积的最大值.

试题解析:ABC中,0Cπ∴sinC≠0

已知等式利用正弦定理化简得:2cosCsinAcosB+sinBcosA=sinC

整理得:2cosCsinA+B=sinC

2cosCsinπ-A+B))=sinC

2cosCsinC=sinC

∴cosC=

C0π).

C=.

2)由余弦定理可得:9=c2=a2+b2-2abcosC≥2ab-ab=ab

可得ab≤9

S=absinC≤ 当且仅当a=b=3时取等号

∴△ABC面积的最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,四边形是菱形, ,又平面,

是棱的中点, 在棱上,且.

(1)证明:平面平面

(2)若平面,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一个居民月用电量标准,用电量不超过的部分按平价收费,超出的部分按议价收费.为此,政府调查了100户居民的月平均用电量(单位:度),以 分组的频率分布直方图如图所示.

(1)求直方图中的值;

(2)求月平均用电量的众数和中位数;

(3)如果当地政府希望使左右的居民每月的用电量不超出标准,根据样本估计总体的思想,你认为月用电量标准应该定为多少合理?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面为正三角形, 底面 的中点.

(1)求证: 平面

(2)求证:平面平面

3)在侧棱上是否存在一点使得三棱锥的体积是若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若平面点集满足:任意点存在都有则称该点集阶聚合点集。现有四个命题

,则存在正数,使得阶聚合点集

,则是“阶聚合”点集;

③若,则是“2阶聚合”点集;

④若是“阶聚合”点集,则的取值范围是.

其中正确命题的序号为( )

A. ①④ B. ②③ C. ①② D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且与另一条直线相切于点.

(1)求圆的标准方程;

(2)已知在圆上运动,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 底面 是棱上一点.

I)求证:

II)若 分别是 的中点,求证: 平面

III)若二面角的大小为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标系中,椭圆的上焦点为,椭圆的离心率为,且过点.

(1)求椭圆的方程.

(2)设过椭圆的上顶点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的方程.

查看答案和解析>>

同步练习册答案