精英家教网 > 高中数学 > 题目详情
已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)的上下焦点分别为F1,F1,短轴两个端点为P,P1,且四边形F1PF2P1是边长为2的正方形.
(1)求椭圆方程;
(2)设△ABC,AC=2
3
,B为椭圆
y2
a2
+
x2
b2
=1(a>b>0)在x轴上方的顶点,当AC在直线y=-1上运动时,求△ABC外接圆的圆心Q的轨迹E的方程;
(3)过点F(0,
3
2
)作互相垂直的直线l1l2,分别交轨迹E于M,N和R,Q.求四边形MRNQ的面积的最小值.
分析:(1)如图所示,由于四边形F1PF2P1是边长为2的正方形,可得a=2,b=c,再利用a2=b2+c2=2b2,解得b2即可;
(2)由(1)可知B(0,2).设A(m-
3
,-1)
,C(m+
3
,-1)
,分别求出AC与AB的垂直平分线方程,联立即可得出;
(3)直线l1,l2的斜率存在且不为0,直线l1的方程为y=kx+
3
2
,直线l2的方程为y=-
1
k
x+
3
2
.分别与抛物线的方程联立得到根与系数的关系,利用弦长公式和基本不等式即可得出.
解答:解:(1)如图所示,∵四边形F1PF2P1是边长为2的正方形,∴a=2,b=c,∴4=a2=b2+c2=2b2,解得b2=2.
∴椭圆的方程为
y2
4
+
x2
2
=1

(2)由(1)可知B(0,2).
设A(m-
3
,-1)
,C(m+
3
,-1)
,则AC的垂直平分线x=m.线段AB的中点为(
m-
3
2
1
2
)
kAB=
3
3
-m
,其垂直平分线的斜率为-
3
-m
3
,故AB的垂直平分线的方程为y=
m-
3
3
(x-
m-
3
2
)+
1
2
,与x=m联立解得x2=6y.
(3)①直线l1,l2的斜率一个为0而另一个不存在时,不符合题意.
②直线l1,l2的斜率存在且不为0,直线l1的方程为y=kx+
3
2
,直线l2的方程为y=-
1
k
x+
3
2

联立
y=kx+
3
2
x2=6y
,化为y2-(3+6k2)y+
9
4
=0
,∴y1+y2=3+6k2
∵直线l1过抛物线的焦点F(0,
3
2
)

∴|MN|=y1+y2+p=3+6k2+3=6(1+k2).同理|PQ|=6(1+
1
k2
)

∴S=
1
2
|MN| |PQ|
=18(k2+
1
k2
+2)
≥18(2
k2
1
k2
+2)
=72,当且仅当k=±1时等号成立.
故当k=±1时,此时四边形MRNQ的面积取得最小值72.
点评:本题综合考查了椭圆及抛物线的标准方程及其性质、直线与抛物线相交问题转化为方程联立得到根与系数的关系、弦长公式、四边形的面积公式、基本不等式等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(
3
c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(
3
c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1 (a>b>0)
的离心率e满足3, 
1
e
, 
4
9
成等比数列,且椭圆上的点到焦点的最短距离为2-
3
.过点(2,0)作直线l交椭圆于点A,B.
(1)若AB的中点C在y=4x(x≠0)上,求直线l的方程;
(2)设椭圆中心为,问是否存在直线l,使得的面积满足2S△AOB=|OA|•|OB|?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:南通模拟 题型:解答题

平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(
3
c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.

查看答案和解析>>

同步练习册答案