精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , Sn=n2﹣4n﹣5

(1)求数列{an}的通项公式;

(2)设bn=|an|,数列{bn}的前n项和为TnTn

【答案】(1)(2)

【解析】

(1)由Sn=n2﹣4n﹣5,可得当n2时,an=Sn﹣Sn﹣1=2n﹣5,再检验当n=1时,a1是否适合上式,即可求得数列{an}的通项公式;

(2)由bn=|an|=|2n﹣5|,分n=1、n=2、n3三类讨论,分别求得数列{bn}的前n项和Tn,最后综合起来即可求.

(1)解:∵Sn=n2﹣4n﹣5,

∴当n≥2时,an=Sn﹣Sn1=n2﹣4n﹣5﹣[(n﹣1)2﹣4(n﹣1)﹣5]=2n﹣5,

又当n=1时,a1=﹣8不适合上式,

(2)解:∵bn=|an|,数列{bn}的前n项和为Tn

n=1时,b1=|a1|=8,T1=8;

n=2时,b2=|a2|=1,T2=8+1=9;

n≥3时,an=2n﹣5≥1>0,

bn=|an|=an=2n﹣5,

Tn=8+1+(1+3+…+2n﹣5)=9+ =(n﹣2)2+9=n2﹣4n+13.

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求不等式的解集;

(2)若对一切,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是空间两条直线, 是空间两个平面,则下列命题中不正确的是( )

A. 时,“”是“”的充要条件

B. 时,“”是“”的充分不必要条件

C. 时,“”是“”的必要不充分条件

D. 时,“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列{an}满足a1=1,且a1 , a2 , a5成等比数列.
(1)求{an}的通项公式;
(2)若bn=(﹣1)n (n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DBC的中点.

(1)求证:A1B∥平面ADC1;

(2)若ABAC,ABAC=1,AA1=2,求几何体ABD-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个车间为了规定工时定额,需要确定加工某种零件所花费的时间,为此进行了6次试验,收集数据如下:

零件数(个)

加工时间(小时)

(Ⅰ)在给定的坐标系中划出散点图,并指出两个变量是正相关还是负相关;

(Ⅱ)求回归直线方程;

(Ⅲ)试预测加工个零件所花费的时间?

附:对于一组数据,……,,其回归直线的斜率和截距的最小二乘估计分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C是直线l上的三点,向量 满足: .则函数y=f(x)的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左焦点为,左准线方程为.

(1)求椭圆的标准方程;

(2)已知直线交椭圆 两点.

①若直线经过椭圆的左焦点,交轴于点,且满足 .求证: 为定值;

②若为原点),求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业投资公司拟开发某种新能源产品,估计能获得万元到万元的投资利益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过收益的

)请分析函数是否符合公司要求的奖励函数模型,并说明原因.

)若该公司采用函数模型作为奖励函数模型,试确定最小正整数的值.

查看答案和解析>>

同步练习册答案