精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥的底面为菱形,且中点.

1)证明:平面

2)若,求三棱锥的体积.

【答案】1)证明见解析 2

【解析】

1)连接BDACF,连接EF,证明EFPB得到结论.

2)先确定APBP且△ABC为正三角形,取AB中点M,连接PMCM,证明PM⊥平面ABCD,根据得到答案.

1)连接BDACF,连接EF

∵四边形ABCD为菱形,∴FAC中点,那么EFPB

又∵平面ACE平面ACEPB∥平面ACE

2)由勾股定理易知APBP且△ABC为正三角形,

EDP中点,∴

AB中点M,连接PMCM,由几何性质可知PM1

又∵PC2,∴PC2PM2MC2,即PMMC,∵PMAB

PM⊥平面ABCD

,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】图()是某品牌汽车年月销量统计图,图()是该品牌汽车月销量占所属汽车公司当月总销量的份额统计图,则下列说法错误的是(

A.该品牌汽车年全年销量中,月份月销量最多

B.该品牌汽车年上半年的销售淡季是月份,下半年的销售淡季是月份

C.年该品牌汽车所属公司月份的汽车销量比月份多

D.该品牌汽车年下半年月销量相对于上半年,波动性小,变化较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽(约3世纪初)在为《周牌算经》作注时验证勾股定理的示意图,现在提供6种不同的颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂同色的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响且无平局.求:

(1)前三局比赛甲队领先的概率;

(2)设本场比赛的局数为,求的概率分布和数学期望. (用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为锐角的外心,且三边与面积满足,若(其中是实数),则的最大值是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬中华民族优秀传统文化,树立正确的价值导向,落实立德树人根本任务,某市组织30000名高中学生进行古典诗词知识测试,根据男女学生人数比例,使用分层抽样的方法从中随机抽取100名学生,记录他们的分数,整理所得频率分布直方图如图:

)规定成绩不低于60分为及格,不低于85分为优秀,试估计此次测试的及格率及优秀率;

)试估计此次测试学生成绩的中位数;

)已知样本中有的男生分数不低于80分,且样本中分数不低于80分的男女生人数相等,试估计参加本次测试30000名高中生中男生和女生的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,分别是的中点,将沿着向上翻折到的位置,连接.

1)求证:平面

2)若翻折后,四棱锥的体积,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,下述四个结论:

是偶函数;

的最小正周期为

的最小值为0

上有3个零点

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4:坐标系与参数方程)

已知圆的参数方程为为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上的动点,求点与曲线上点的距离的最小值,并求此时点的坐标.

查看答案和解析>>

同步练习册答案