精英家教网 > 高中数学 > 题目详情
1.下列等式一定成立的是(  )
A.a${\;}^{-\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=0B.a${\;}^{\frac{1}{2}}$÷a${\;}^{\frac{1}{3}}$=a${\;}^{\frac{5}{6}}$
C.(a32=a9D.a${\;}^{\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=a

分析 根据指数幂的运算性质分别计算即可.

解答 解:对于A:${a}^{-\frac{1}{2}}$•${a}^{\frac{1}{2}}$=a0=1,故A错误;
对于B:${a}^{\frac{1}{2}}$÷${a}^{\frac{1}{3}}$=${a}^{\frac{1}{6}}$,故B错误;
对于C:(a32=a6,故C错误;
对于D:${a}^{\frac{1}{2}}$•${a}^{\frac{1}{2}}$=a,故D正确;
故选:D.

点评 本题考查了指数幂的运算性质,熟练掌握指数幂的运算性质是解题的关键,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}对任意的自然数n满足:a1+2a2+3a3+…+nan=2n-1.
(Ⅰ)求a1及通项an
(Ⅱ)设数列$\{\frac{1}{a_n}\}$的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|-2<x<7 },B={x|x>1,x∈N},则A∩B的元素的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:|1-$\frac{x-1}{3}$|≤2,命题q:x2-2x+(1-m)(1+m)≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆x2+y2=4,过点A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程为(  )
A.(x-1)2+y2=4  (-1≤x<$\frac{1}{2}$)B.(x-1)2+y2=4 (0≤x<1)
C.(x-2)2+y2=4  (-1≤x<$\frac{1}{2}$)D.(x-2)2+y2=4 (0≤x<1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足约束条件$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$,则目标函数z=7x-y的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC的内角A,B,C所对的边分别为a,b,c,若(3b-c)cosA=acosC,${S_△}_{ABC}=\sqrt{2}$,则$\overrightarrow{BA}•\overrightarrow{AC}$=(  )
A.$\sqrt{2}$B.2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知tanα=2,求$\frac{3sinα-2cosα}{sinα+cosα}$的值.
(2)已知$sinα+cosα=\sqrt{2}$,求$tanα+\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的前n项和Sn=2an-2n+1,若不等式(-1)nλ<$\frac{{S}_{n}}{{S}_{n+1}}$,对?n∈N*恒成立,则实数λ的取值范围(-$\frac{1}{4}$,$\frac{1}{3}$).

查看答案和解析>>

同步练习册答案