9£®¸ø¶¨ÓÐÇîµ¥µ÷µÝÔöÊýÁÐ{xn}£¨n¡ÊN*£©£¬ÊýÁÐ{xn}ÖÁÉÙÓÐÁ½ÏÇÒxi¡Ù0£¨1¡Üi¡Ün£©£¬¶¨Ò弯ºÏA={£¨x£¬y£©|1¡Üi£¬j¡Ün£¬ÇÒi£¬j¡ÊN*}£®Èô¶ÔÈÎÒâµãA1¡ÊA£¬´æÔÚA2¡ÊAʹµÃOA1¡ÍOA2£¨OΪ×ø±êÔ­µã£©£¬Ôò³ÆÊýÁÐ{xn}¾ßÓÐÐÔÖÊP£®
£¨1£©¸ø³öÏÂÁÐËĸöÃüÌ⣬ÆäÖÐÕýÈ·ÊǢ٢ۢܣ¨ÌîÉÏËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©
¢ÙÊýÁÐ{xn}£º-2£¬2¾ßÓÐÐÔÖÊP£»
¢ÚÊýÁÐ{xn}£º-2£¬-1£¬1£¬2¾ßÓÐÐÔÖÊP£»
¢ÛÊýÁÐ{xn}¾ßÓÐÐÔÖÊP£¬Ôò{xn}ÖÐÒ»¶¨´æÔÚÁ½Ïîxi£¬xj£¬Ê¹µÃxi+xj=0£»
¢ÜÊýÁÐ{xn}¾ßÓÐÐÔÖÊP£¬x1=-1£¬x2£¾0£¬ÇÒxn£¾1£¨n¡Ý3£©£¬Ôòx2=1£®
£¨2£©ÈôÊýÁÐ{xn}Ö»ÓÐ2015ÏîÇÒ¾ßÓÐÐÔÖÊP£¬x1=-1£¬x3=2£¬Ôò{xn}µÄËùÓÐS2015=22016-2£®

·ÖÎö £¨1£©ÀûÓÃÊýÁÐ{an}¾ßÓÐÐÔÖÊPµÄ¸ÅÄ¶ÔÊýÁÐ{xn}£º-2£¬2ÓëÊýÁÐ{xn}£º-2£¬-1£¬1£¬3·ÖÎöÅжϼ´¿É£»È¡A1£¨xi£¬xi£©£¬ÊýÁÐ{xn}¾ßÓÐÐÔÖÊP£¬¹Ê´æÔÚµãA2£¨xi£¬xj£©Ê¹µÃOA1¡ÍOA2£¬ÀûÓÃÏòÁ¿µÄ×ø±êÔËËãÕûÀí¼´¿ÉÖ¤µÃxi+xj=0£»ÊýÁÐ{xn}ÖÐÒ»¶¨´æÔÚÁ½Ïîxi£¬xjʹµÃxi+xj=0£»ÊýÁÐ{xn}Êǵ¥µ÷µÝÔöÊýÁÐÇÒx2£¾0£¬1ΪÊýÁÐ{xn}ÖеÄÒ»Ïͨ¹ý·´Ö¤·¨¿ÉÖ¤µÃx2=1£»
£¨2£©x2=1£®ÈôÊýÁÐ{xn}Ö»ÓÐ2015ÏîÇÒ¾ßÓÐÐÔÖÊP£¬¿ÉµÃx4=4£¬x5=8£¬²ÂÏëÊýÁÐ{xn}´ÓµÚ¶þÏîÆðÊǹ«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©¢Ù¶ÔÓÚÊýÁÐ{xn}£¬ÈôA1£¨-2£¬2£©£¬ÔòA2£¨2£¬2£©£¬
ÈôA1£¨-2£¬-2£©ÔòA2£¨2£¬-2£©£¬¾ùÂú×ãOA1¡ÍOA2£¬ËùÒÔ¢Ù¾ßÓÐÐÔÖÊP£¬¹Ê¢ÙÕýÈ·£»
¢Ú¶ÔÓÚÊýÁÐ{xn}£¬µ±A1£¨-2£¬3£©Èô´æÔÚA2£¨x£¬y£©Âú×ãOA1¡ÍOA2£¬
¼´-2x+3y=0£¬¼´$\frac{y}{x}$=$\frac{2}{3}$£¬ÊýÁÐ{xn}Öв»´æÔÚÕâÑùµÄÊýx£¬y£¬Òò´Ë¢Ú²»¾ßÓÐÐÔÖÊP£¬¹Ê¢Ú²»ÕýÈ·£»
¢ÛÈ¡A1£¨xi£¬xi£©£¬ÓÖÊýÁÐ{xn}¾ßÓÐÐÔÖÊP£¬ËùÒÔ´æÔÚµãA2£¨xi£¬xj£©Ê¹µÃOA1¡ÍOA2£¬
¼´xixi+xixj=0£¬ÓÖxi¡Ù0£¬ËùÒÔxi+xj=0£¬¹Ê¢ÛÕýÈ·£»
¢ÜÓÉ¢ÛÖª£¬ÊýÁÐ{xn}ÖÐÒ»¶¨´æÔÚÁ½Ïîxi£¬xjʹµÃxi+xj=0£»
ÓÖÊýÁÐ{xn}Êǵ¥µ÷µÝÔöÊýÁÐÇÒx2£¾0£¬ËùÒÔ1ΪÊýÁÐ{xn}ÖеÄÒ»Ï
¼ÙÉèx2¡Ù1£¬Ôò´æÔÚk£¨2£¼k£¼n£¬k¡ÊN*£©ÓÐxk=1£¬ËùÒÔ0£¼x2£¼1£®
´ËʱȡA1£¨x2£¬xn£©£¬ÊýÁÐ{xn}¾ßÓÐÐÔÖÊP£¬ËùÒÔ´æÔÚµãA2£¨xi£¬xs£©Ê¹µÃOA1¡ÍOA2£¬
ËùÒÔx2xi+xnxs=0£»Ö»ÓÐx1£¬ËùÒÔµ±x1=-1ʱx2=xnxs£¾xs¡Ýx2£¬Ã¬¶Ü£»
µ±xs=-1ʱx2=$\frac{{x}_{n}}{{x}_{i}}$¡Ý1£¬Ã¬¶Ü£®ËùÒÔx2=1£¬¹Ê¢ÜÕýÈ·£®
£¨2£©ÓÉ£¨1£©Öª£¬x2=1£®ÈôÊýÁÐ{xn}Ö»ÓÐ2015ÏîÇÒ¾ßÓÐÐÔÖÊP£¬¿ÉµÃx4=4£¬x5=8£¬
²ÂÏëÊýÁÐ{xn}´ÓµÚ¶þÏîÆðÊǹ«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ËùÒÔS2015=-1+1+2+4+¡­+22015
=2+4+¡­+22015=22016-2£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü£»22016-2£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬¿¼²éиÅÄîµÄÀí½âÓëÓ¦Óã¬Í»³ö¿¼²é³éÏó˼άÓë·´Ö¤·¨µÄ×ÛºÏÓ¦Óã¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªf£¨x£©=x3-3x+3+m£¨m£¾0£©£®ÔÚÇø¼ä[0£¬2]ÉÏ´æÔÚÈý¸ö²»Í¬µÄʵÊýa£¬b£¬c£¬Ê¹µÃÒÔf£¨a£©£¬f£¨b£©£¬f£¨c£©Îª±ß³¤µÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ®ÔòmµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨3+4\sqrt{2}£¬+¡Þ£©$B£®$£¨2\sqrt{2}-1£¬+¡Þ£©$C£®$£¨0£¬2\sqrt{2}-1£©$D£®$£¨0£¬3+4\sqrt{2}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒ3a3=a6+4£¬Ôò¡°a2£¼1¡±ÊÇ¡°S5£¼10¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª$\overrightarrow{{e}_{1}}$¡¢$\overrightarrow{{e}_{2}}$ÊǼнÇΪ$\frac{¦Ð}{3}$µÄµ¥Î»ÏòÁ¿£¬Èô$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$£¬$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$£¬ÔòÏòÁ¿$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{\sqrt{3}}{2}$C£®$\sqrt{3}$D£®$\frac{3\sqrt{13}}{26}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ò»¸öÕýÀâÖù£¨µ×ÃæÊÇÕýÈý½ÇÐΡ¢²àÀâ´¹Ö±ÓÚµ×ÃæµÄÀâÖù£©µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃÈýÀâÖùµÄ±íÃæ»ýµÈÓÚ£¨¡¡¡¡£©
A£®2$\sqrt{3}$+12B£®2$\sqrt{3}$+24C£®2$\sqrt{3}$+12D£®6$\sqrt{3}$+24

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒÂú×ãSn+2an=3£¨n¡ÊN*£©£¬ÉèÊýÁÐ{bn}Âú×ãb1=a1£¬bn=$\frac{2{b}_{n-1}}{{b}_{n-1}+2}$£¨n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©Éè${c_n}=\frac{a_n}{b_n}$ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®aÓë|a|ÊǼ¯ºÏAÖеÄÁ½¸ö²»Í¬ÔªËØ
B£®·½³Ì£¨x-1£©2£¨x-2£©=0µÄ½â¼¯ÓÐ3¸öÔªËØ
C£®Å×ÎïÏßy=x2ÉϵÄËùÓеã×é³ÉµÄ¼¯ºÏÊÇÓÐÏÞ¼¯
D£®²»µÈʽx2+1¡Ü0µÄ½â¼¯ÊÇ¿Õ¼¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªa£¬bΪ³£Êý£¬Éèf£¨x£©=ax2+|x-b|+1£®
£¨1£©µ±a=0ʱ£¬Ð´³öº¯ÊýxµÄµ¥µ÷ÔöÇø¼äºÍµ¥µ÷¼õÇø¼ä£»
£¨2£©µ±a=1ʱ£¬¢ÙÊÔÌÖÂÛº¯Êýf£¨x£©µÄÆæżÐÔ£»¢ÚÇóº¯Êýf£¨x£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª¼¯ºÏA={x|3-3x£¾0}£¬ÔòÏÂÁÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®3¡ÊAB£®1¡ÊAC£®0∉AD£®-1¡ÊA

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸