精英家教网 > 高中数学 > 题目详情
1.若直线y=a与函数y=|$\frac{lnx+1}{{x}^{3}}$|的图象恰有3个不同的交点,则实数a的取值范围为(  )
A.{$\frac{{e}^{2}}{3}$}B.(0,$\frac{{e}^{2}}{3}$)C.($\frac{{e}^{2}}{3}$,e)D.($\frac{1}{e}$,1)∪{$\frac{{e}^{2}}{3}$}

分析 先求得函数y=|$\frac{lnx+1}{{x}^{3}}$|的定义域为(0,+∞),再分段y=|$\frac{lnx+1}{{x}^{3}}$|=$\left\{\begin{array}{l}{\frac{-lnx-1}{{x}^{3}},x∈(0,{e}^{-1})}\\{\frac{lnx+1}{{x}^{3}},x∈[{e}^{-1},+∞)}\end{array}\right.$,从而分别求导确定函数的单调性,从而解得.

解答 解:函数y=|$\frac{lnx+1}{{x}^{3}}$|的定义域为(0,+∞),
y=|$\frac{lnx+1}{{x}^{3}}$|=$\left\{\begin{array}{l}{\frac{-lnx-1}{{x}^{3}},x∈(0,{e}^{-1})}\\{\frac{lnx+1}{{x}^{3}},x∈[{e}^{-1},+∞)}\end{array}\right.$,
当x∈(0,e-1)时,y′=$\frac{3lnx+2}{{x}^{4}}$,
∵x∈(0,e-1),∴lnx<-1,
∴y′=$\frac{3lnx+2}{{x}^{4}}$<0,
∴y=|$\frac{lnx+1}{{x}^{3}}$|在(0,e-1)上是减函数;
当x∈(e-1,+∞)时,y′=-$\frac{3lnx+2}{{x}^{4}}$,
∴当x∈(e-1,${e}^{-\frac{2}{3}}$)时,∴y′>0,
当x∈(${e}^{-\frac{2}{3}}$,+∞)时,∴y′<0,
∴y=|$\frac{lnx+1}{{x}^{3}}$|在(e-1,${e}^{-\frac{2}{3}}$)上是增函数,
在(${e}^{-\frac{2}{3}}$,+∞)上是减函数;
且$\underset{lim}{x→{0}^{+}}$|$\frac{lnx+1}{{x}^{3}}$|=+∞,f(e-1)=0,
f(${e}^{-\frac{2}{3}}$)=$\frac{{e}^{2}}{3}$,$\underset{lim}{x→+∞}$|$\frac{lnx+1}{{x}^{3}}$|=0,
故实数a的取值范围为(0,$\frac{{e}^{2}}{3}$),
故选B.

点评 本题考查了导数的综合应用及分段函数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知圆C的圆心在坐标原点,且与直线l1:x-y-2$\sqrt{2}$=0相切
(1)求直线l2:4x-3y+5=0被圆C所截得的弦AB的长.
(2)若与直线l1垂直的直线l与圆C交于不同的两点P,Q,若∠POQ为钝角,求直线l纵截距的取值范围.
(3)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{an+log2an}(n∈N*)的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈N|x<8},则下列关系错误的是(  )
A.0∈AB.1.5∉AC.-1∉AD.8∈A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=1+1ogx2+1og${\;}_{{x}^{2}}$4+1og${\;}_{{x}^{3}}$8,则使f(x)<0的x的取值范围是(  )
A.(0,1)B.(1,+∞)C.($\frac{1}{8}$,1)D.(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某长方体的三视图如图,长度为$\sqrt{10}$的体对角线在正视图中的投影长度为$\sqrt{6}$,在侧视图中的投影长度为$\sqrt{5}$,则该长方体的全面积为(  )
A.3$\sqrt{5}$+2B.6$\sqrt{5}$+4C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),点F1(-1,0)、C(-2,0)分别是椭圆M的左焦点、左顶点,过点F1的直线l(不与x轴重合)交M于A,B两点.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)是否存在直线l,使得点B在以线段F1C为直径的圆上,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\sqrt{-{x}^{2}+4x-3}-kx-k+1$有两个零点,则k的取值范围是(  )
A.(0,$\frac{1}{2}$]B.($\frac{1}{4}$,$\frac{3}{4}$]C.[$\frac{1}{2}$,$\frac{3}{4}$)D.[$\frac{1}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆x2+y2-4x+2y-11=0的一条直径过直线x-2y-3=0被圆截得的弦的中点,则该直径所在的直线方程是(  )
A.2x+y-5=0B.x-2y=0C.2x+y-3=0D.x+2y=0

查看答案和解析>>

同步练习册答案