精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}-2x(x≥0)\\{x^2}-2x(x<0)\end{array}$,又α,β为锐角三角形两锐角则(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)>f(sinβ)D.f(cosα)>f(cosβ)

分析 先判断函数f(x)的单调性,由α,β为锐角三角形的两个锐角,可得α+β>$\frac{π}{2}$,进而β>$\frac{π}{2}$-α,且β,$\frac{π}{2}$-α均为锐角,结合正弦函数的单调性和诱导公式5,可得结论.

解答 解:作出函数f(x)的图象,则函数为单调递减函数,
∵α,β为锐角三角形的两个锐角,
∴α+β>$\frac{π}{2}$,
∴β>$\frac{π}{2}$-α,且β,$\frac{π}{2}$-α均为锐角,
∴sinβ>sin($\frac{π}{2}$-α)=cosα,
cosβ<cos($\frac{π}{2}$-α)=sinα,
∴f(sinα)<f(cosβ),
故选:B.

点评 本题主要考查函数值的大小比较,根据数形结合判断函数的单调性,结合三角函数的诱导公式进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.方程x2+y2-2y=0所表示的曲线的特征是(  )
A.关于直线y=x对称B.关于原点对称C.关于x轴对称D.关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(log${\;}_{\frac{1}{4}}$x)2-log${\;}_{\frac{1}{4}}$x+5,x∈[1,4],求f(x)的最大值和最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以下命题中:
①设有一个回归方程$\widehat{y}$=2-3x,变量x增加一个单位时,y平均增加3个单位;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.
④将八进制数135(8)转化为二进制数是1011101(2)
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在空间直角坐标系中,点A(1,2,-3)关于x轴的对称点为(  )
A.(1,-2,-3)B.(1,-2,3)C.(1,2,3)D.(-1,2,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点,l1,l2为双曲线的两条渐近线.设过点M(b,0)且平行于l1的直线交l2于点P.若PF1⊥PF2,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{\sqrt{14-2\sqrt{41}}}{2}$D.$\frac{\sqrt{14+2\sqrt{41}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图如图所示,其中俯视图是半径为4的圆面的四分之一,则该几何体的体积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线的一条渐近线方程为y=$\frac{4}{3}$x,那么该双曲线的离心率为$\frac{5}{3}$或$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图给出的是计算1×3+3×5+5×7+…+13×15的值的一个程序框图,其中判断框内应填入的条件不正确的是(  )
A.i≥13?B.i>14?C.i≥14?D.i≥15?

查看答案和解析>>

同步练习册答案