精英家教网 > 高中数学 > 题目详情
已知各项均为正数的等比数列{an}的前n项和为Sn,a1=3,S3=39.
(1)求数列{an}通项公式;
(2)若在an与an+1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:
【答案】分析:(Ⅰ)由a1=3,S3=39,知1+q+q2=13.故q=3,或q=-4,由此能求出
(Ⅱ)由,知,由题知:an+1=an+(n+1)dn,则.由上知:,所以=,由此利用错位相减法能够证明
解答:解:(Ⅰ)∵a1=3,S3=39,∴q≠1,
∴1+q+q2=13.∴q=3,或q=-4(舍),
.…(6分)
(Ⅱ)∵,则,由题知:
an+1=an+(n+1)dn,则
由上知:
所以=

所以-
=-
=
所以
.…(12分)
点评:本题考查数列通项公式的求法,证明数列的前n项和小于定值.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河北省石家庄高三上学期调研考试文科数学试卷(解析版) 题型:选择题

已知各项均为正数的等比数列中,的等比中项为,则的最小值为(    )

A.16    B.8    C.    D.4

 

查看答案和解析>>

科目:高中数学 来源:2013届辽宁朝阳柳城高中高三上第三次月考理科数学试卷(解析版) 题型:解答题

 已知各项均为正数的数列

的等比中项。

(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

 

查看答案和解析>>

科目:高中数学 来源:2013届辽宁朝阳柳城高中高三上第三次月考文科数学试卷(解析版) 题型:解答题

(12分)已知各项均为正数的数列

的等比中项。

(1)求证:数列是等差数列;

(2)若的前n项和为Tn,求Tn

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列

的等比中项。

(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

 

查看答案和解析>>

同步练习册答案