【题目】 由经验得知,在某商场付款处排队等候付款的人数及概率如下表
排队人数 | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
(1)至多有2人排队的概率是多少?
(2)至少有2人排队的概率是多少?
【答案】(1)0.56 (2)0.74
【解析】
(1)“至多2人排队”是“没有人排队”,“1人排队”,“2人排队”三个事件的和事件,三个事件彼此互斥,利用互斥事件的概率公式求出至多2人排队的概率.
(2)“至少2人排队”与“少于2人排队”是对立事件;“少于2人排队”是“没有人排队”,“1人排队”二个事件的和事件,二个事件彼此互斥,利用互斥事件的概率公式求出“少于2人排队”的概率;再利用对立事件的概率公式求出)“至少2人排队”的概率.
(1)记没有人排队为事件A,1人排队为事件B.
2人排队为事件C,A、B、C彼此互斥.
P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56
(2)记至少2人排队为事件D,少于2人排队为事件A+B,那么事件D与A+B是对立事件,则
P(D)=P()=1﹣(P(A)+P(B))=1﹣(0.1+0.16)=0.74.
科目:高中数学 来源: 题型:
【题目】设函数是定义在R上的函数,对任意实数x,有f(1﹣x)=x2﹣3x+3.
(1)求函数的解析式;
(2)若函数在g(x)=f(x)﹣(1+2m)x+1(m∈R)在上的最小值为﹣2,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费元,未租出的车每辆每月需要维护费元.
(1)当每辆车的月租金定为元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式及数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定直线l:y=x+3,定点A(2,1),以坐标轴为对称轴的椭圆C过点A且与l相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦AP,AQ的中点分别为M,N,若MN平行于l,则OM,ON斜率之和是否为定值?若是定值,请求出该定值;若不是定值请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面命题正确的是( )
A.“”是“”的 充 分不 必 要条件
B.命题“若,则”的 否 定 是“ 存 在,则”.
C.设,则“且”是“”的必要而不充分条件
D.设,则“”是“”的必要 不 充 分 条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数集A由实数构成:且满足:若,则
(1)若,试证明A中还有另外两个元素;
(2)集合A是否为双元素集合,并说明理由;
(3)若集合A是有限集,求集合A中所有元素的积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分14分)已知函数.
(Ⅰ)若函数在其定义域上是增函数,求实数的取值范围;
(Ⅱ)当时,求出的极值;
(Ⅲ)在(Ⅰ)的条件下,若在内恒成立,试确定的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com