【题目】已知椭圆的两个焦点为,,离心率为,点,在椭圆上,在线段上,且的周长等于.
(1)求椭圆的标准方程;
(2)过圆上任意一点作椭圆的两条切线和与圆交于点,,求面积的最大值.
【答案】(1);(2).
【解析】
试题分析:(1)由的周长为可得,由离心率得,进而的椭圆的标准方程;(2)先根据韦达定理证明两切斜线斜率积为,进而得两切线垂直,得线段为圆的直径,,然后根据不等式及圆的几何意义求的最大值.
试题解析:(1)由的周长为,得,,由离心率,得,.所以椭圆的标准方程为:.
(2)设,则.
(ⅰ)若两切线中有一条切线的斜率不存在,则,,另一切线的斜率为0,从而.此时,.
(ⅱ)若切线的斜率均存在,则,设过点的椭圆的切线方程为,
代入椭圆方程,消并整理得:.
依题意,.
设切线,的斜率分别为,,从而,即.
线段为圆的直径,.
所以,
当且仅当时,取最大值4.由(ⅰ)(ⅱ)可得:最大值是4.
科目:高中数学 来源: 题型:
【题目】已知,是两条不同直线,,是两个不同平面,则下列命题正确的是( )
A.若,垂直于同一平面,则与平行
B.若,平行于同一平面,则与平行
C.若,不平行,则在内不存在与平行的直线
D.若,不平行,则与不可能垂直于同一平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某制造厂商10月份生产了一批乒乓球,从中随机抽取个进行检查,测得每个球的直径(单位:),将数据进行分组,得到如下频率分布表:
(1)求、、及、的值,并画出频率分布直方图(结果保留两位小数);
(2)已知标准乒乓球的直径为,直径误差不超过的为五星乒乓球,若这批乒乓球共有个,试估计其中五星乒乓球的数目;
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表,估计这批乒乓球直径的平均值和中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率,圆与直线相切,为坐标原点.
(1)求椭圆的方程;
(2)过点任作一直线交椭圆于两点,记,若在线段上取一点,使得,试判断当直线运动时,点是否在某一定直一上运动?若是,请求出该定直线的方程;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】老师讲一道数学题,李峰能听懂的概率是0.8,是指( )
A.老师每讲一题,该题有80%的部分能听懂,20%的部分听不懂
B.老师在讲的10道题中,李峰能听懂8道
C.李峰听懂老师所讲这道题的可能性为80%
D.以上解释都不对
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某制造厂商10月份生产了一批乒乓球,从中随机抽取个进行检查,测得每个球的直径(单位:),将数据进行分组,得到如下频率分布表:
(1)求、、及、的值,并画出频率分布直方图(结果保留两位小数);
(2)已知标准乒乓球的直径为,直径误差不超过的为五星乒乓球,若这批乒乓球共有个,试估计其中五星乒乓球的数目;
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表,估计这批乒乓球直径的平均值和中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数().
(1)当时,求函数在上的最大值和最小值;
(2)当时,是否存在正实数,当(是自然对数底数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com