分析 (1)由已知可得$f(x)=-sin(2x-\frac{π}{6})+\frac{3}{2}$,利用正弦函数的图象和性质可求最大值及取得最大值时自变量x的集合.
(2)令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,可得f(x)单调减区间.
解答 (本小题满分10分)
解:(1)$f(x)=-sin(2x-\frac{π}{6})+\frac{3}{2}$,此时:$f{(x)_{max}}=\frac{5}{2}$,
由2x-$\frac{π}{6}$=2kπ-$\frac{π}{2}$,k∈Z,
可得:x=kπ-$\frac{π}{6}$,k∈Z,可得:取得最大值自变量所对应的集合是$\left\{{x|x=kπ-\frac{π}{6}}\right.,k∈Z\left.{\;}\right\}$,…(5分)
(2)∵$f(x)=-sin(2x-\frac{π}{6})+\frac{3}{2}$,
∴令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,可得:kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
∴f(x)单调减区间是:[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z…(10分)
(说明:本题只有结果,过程酌情加减分)
点评 本题主要考查了正弦函数的图象和性质的应用,考查了数形结合思想的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (5,+∞)∪{$\frac{19}{4}$} | B. | ($\frac{19}{4}$,5) | C. | (0,4) | D. | (-∞,$\frac{19}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 在(-∞,0)上是增函数 | B. | 在(-1,1)上是增函数 | ||
C. | 在(-1,0)上是增函数 | D. | 在(1,+∞)上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com