精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中, 底面分别是的中点, ,且.

(1)求证: 平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;

若不存在,请说明理由.

【答案】1证明见解析;(2)存在.

【解析】试题分析:(1)通过证明AF与平面SBC内的两条相交直线垂直即可;
2)建立空间直角坐标系,由,所以求得平面的法向量为平面的法向量为由二面角的大小为,得,化简得,又,求得.

试题解析:

1)由

的中点,得

因为底面,所以

中, ,所以

因此,又因为

所以

,即,因为底面

所以,又,

,所以平面.

(2)假设满足条件的点,存在,

并设,以为坐标原点,分别以轴建立空间之间坐标系

,所以,所以

设平面的法向量为

,取,得

,设平面的法向量为

,取,得

由二面角的大小为,得

化简得,又,求得,于是满足条件的点存在,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列的前项和为,且

(1)求数列的通项公式;

(2)若数列满足:,求 的通项公式;

(3)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数的最小值为.

(1)当时,求的值;

(2)求

(3)已知函数为定义在上的增函数,且对任意的都满足,问:是否存在这样的实数,使不等式对所有恒成立,若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享汽车的出现为我们的出行带来了极大的便利,当然也为投资商带来了丰厚的利润。现某公司瞄准这一市场,准备投放共享汽车。该公司取得了在个省份投放共享汽车的经营权,计划前期一次性投入元. 设在每个省投放共享汽车的市的数量相同(假设每个省的市的数量足够多),每个市都投放辆共享汽车.由于各个市的多种因素的差异,在第个市的每辆共享汽车的管理成本为()元(其中为常数).经测算,若每个省在个市投放共享汽车,则该公司每辆共享汽车的平均综合管理费用为元.(本题中不考虑共享汽车本身的费用)

注:综合管理费用=前期一次性投入的费用+所有共享汽车的管理费用,平均综合管理费用=综合管理费用÷共享汽车总数.

(1)的值;

(2)问要使该公司每辆共享汽车的平均综合管理费用最低,则每个省有几个市投放共享汽车?此时每辆共享汽车的平均综合管理费用为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处有极值,求的值;

(2)若对于任意的上单调递增,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知△ABC中,∠ACB=90°,SA⊥平面ABCADSC,求证:AD⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在边长为12的正方形AA'A1'A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA1'分别交BB1,CC1于点P,Q,将该正方形沿BB1、CC1折叠,使得A'A1'与AA1重合,构成如图2所示的三棱柱ABC﹣A1B1C1

(1)求三棱锥P﹣ABC与三棱锥Q﹣PAC的体积之和;

(2)求直线AQ与平面BCC1B1所成角的正弦值;

(3)求三棱锥Q﹣ABC的外接球半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台风中心在港口南偏东方向上,距离港口千米处的海面上形成,并以每小时千米的速度向正北方向移动,距台风中心千米以内的范围将受到台风的影响,则港口受到台风影响的时间为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V-ABC中,平面VAB平面ABC VAB为等边三角形,ACBCAC=BC=O,M分别为AB,VA的中点。

(I)求证:VB//平面MOC;

II)求证:平面MOC平面VAB

(III)求三棱锥V-ABC的体积。

查看答案和解析>>

同步练习册答案