精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象在处的切线经过点,且的一个极值点为-1.

1)求的极值;

2)已知方程上恰有一个实数根,求的取值范围.

【答案】1.2

【解析】

1)首先求出函数的导函数,求出函数在处的切线方程,由点过切线,即可得到,再由函数的一个极值点为,即可求出函数解析式,最后利用导数求出函数的极值;

2)依题意可得函数的图象与直线上恰有一个交点,结合函数图象,即可得解;

解:(1)∵,∴

的图象在处的切线方程为.

∵该切线经过点,∴,即.

又∵的一个极值点为-1,∴.

由①②可知,故.

,令,得.

变化时,的变化情况如下表:

-1

+

0

-

0

+

单调递增

极大值

单调递减

极小值

单调递增

.

2)∵方程上恰有一个实数根,

∴函数的图象与直线上恰有一个交点.

结合函数的图象,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与直线垂直,求函数的极值;

(2)设函数.=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的偶函数,对任意,都有,且当时,.在区间内关于的方程恰有个不同的实数根,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一张半径为1米的圆形铁皮,工人师傅需要剪一块顶角为锐角的等腰三角形,不妨设 , 边上的高为 ,圆心为 ,为了使三角形的面积最大,我们设计了两种方案.

(1)方案1:设 ,用表示 的面积 ; 方案2:设的高,用表示 的面积

(2)请从(1)中的两种方案中选择一种,求出面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的首项为,前项和为,若对任意的,均有是常数且)成立,则称数列为“数列”.

(1)若数列为“数列”,求数列的通项公式;

(2)是否存在数列既是“数列”,也是“数列”?若存在,求出符合条件的数列的通项公式及对应的的值;若不存在,请说明理由;

(3)若数列为“数列”, ,设,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分别是A1B,B1C1的中点.

(1)求证:MN//平面ACC1A1

(2)求点N到平面MBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.

(1)求椭圆E的标准方程与离心率;

(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海轮以每小时30海里的速度航行,在点测得海面上油井在南偏东,海轮向北航行40分钟后到达点,测得油井在南偏东,海轮改为北偏东的航向再行驶80分钟到达点,则两点的距离为(单位:海里)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

同步练习册答案