精英家教网 > 高中数学 > 题目详情

【题目】已知点 ,圆 ,过的动直线两点,线段中点为 为坐标原点。

1)求点的轨迹方程;

2)当时,求直线的方程以及面积。

【答案】)直线的方程为3x-y-8=0面积是

【解析】试题分析:Ⅰ)圆C的方程可化为(x-42+y2=16,由此能求出圆心为C40),半径为4,设Mxy),求出向量CMMP的坐标,由运用向量的数量积的坐标表示,化简整理求出M的轨迹方程;
Ⅱ)由(Ⅰ)知M的轨迹是以点N3-1)为圆心, 为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,可得ONPM,由直线垂直的条件:斜率之积为-1,再由点斜式方程可得直线l的方程.利用点到直线距离公式结合已知条件能求出△POM的面积

试题解析:

Ⅰ)圆C的方程可化为: ,所以圆心C(4,0)半径为4

Mx,y,x-4y),则由条件知,

故(x-4)(2-x+y2-y=0。由于点P在圆C的内部,所以M的轨迹方程是

(Ⅱ)由(Ⅰ)可知M的轨迹是以点N(3,-1)为圆心,以为半径的圆。又,故O在线段PM的垂直平分线上,显然P在圆N上,从而ON⊥PM。KON=,所以直线的斜率为3,故直线的方程为3x-y-8=0.又=,O到的距离为,由勾股定理可得|PM|=,所以△面积是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】供电部门对某社区位居民201611月份人均用电情况进行统计后,按人均用电量分为 五组,整理得到如下的频率分布直方图,则下列说法错误的是(

A. 11月份人均用电量人数最多的一组有

B. 11月份人均用电量不低于度的有

C. 11月份人均用电量为

D. 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中常数.

(1)当时,求函数的极值;

(2)若函数有两个零点,求证:

(3)求证: .

选做题:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在原点,焦点在x轴,焦距为2,且长轴长是短轴长的

()求椭圆E的标准方程;

()P(20),过椭圆E左焦点F的直线lEAB两点,若对满足条件的任意直线l,不等式 λ(λR)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的方程为 为常数).

(1)判断曲线的形状;

(2)设曲线分别与轴, 轴交于点 不同于原点),试判断的面积是否为定值?并证明你的判断;

(3)设直线 与曲线交于不同的两点 ,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

I)求曲线在点处的切线方程.

II)求证:当时,

III)设实数使得恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线.

(1)若曲线C在点处的切线为,求实数的值;

(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

)当为自然对数的底数)时,求的极小值;

Ⅱ)若函数存在唯一零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩阵将直线lxy-1=0变换成直线l′.

(1)求直线l′的方程;

(2)判断矩阵A是否可逆?若可逆,求出矩阵A的逆矩阵A-1;若不可逆,请说明理由.

查看答案和解析>>

同步练习册答案