【题目】已知点 ,圆: ,过的动直线与⊙交两点,线段中点为, 为坐标原点。
(1)求点的轨迹方程;
(2)当时,求直线的方程以及△面积。
【答案】(Ⅰ)(Ⅱ)直线的方程为3x-y-8=0,△面积是
【解析】试题分析:(Ⅰ)圆C的方程可化为(x-4)2+y2=16,由此能求出圆心为C(4,0),半径为4,设M(x,y),求出向量CM,MP的坐标,由运用向量的数量积的坐标表示,化简整理求出M的轨迹方程;
(Ⅱ)由(Ⅰ)知M的轨迹是以点N(3,-1)为圆心, 为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,可得ON⊥PM,由直线垂直的条件:斜率之积为-1,再由点斜式方程可得直线l的方程.利用点到直线距离公式结合已知条件能求出△POM的面积
试题解析:
(Ⅰ)圆C的方程可化为: ,所以圆心C(4,0)半径为4。
设M(x,y),则(x-4,y),则由条件知,
故(x-4)(2-x)+y(2-y)=0,即。由于点P在圆C的内部,所以M的轨迹方程是。
(Ⅱ)由(Ⅰ)可知M的轨迹是以点N(3,-1)为圆心,以为半径的圆。又,故O在线段PM的垂直平分线上,显然P在圆N上,从而ON⊥PM。KON=,所以直线的斜率为3,故直线的方程为3x-y-8=0.又=,O到的距离为,由勾股定理可得|PM|=,所以△面积是。
科目:高中数学 来源: 题型:
【题目】供电部门对某社区位居民2016年11月份人均用电情况进行统计后,按人均用电量分为, , , , 五组,整理得到如下的频率分布直方图,则下列说法错误的是( )
A. 11月份人均用电量人数最多的一组有人
B. 11月份人均用电量不低于度的有人
C. 11月份人均用电量为度
D. 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的中心在原点,焦点在x轴,焦距为2,且长轴长是短轴长的倍.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(2,0),过椭圆E左焦点F的直线l交E于A、B两点,若对满足条件的任意直线l,不等式 ≤λ(λ∈R)恒成立,求λ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的方程为(, 为常数).
(1)判断曲线的形状;
(2)设曲线分别与轴, 轴交于点, (, 不同于原点),试判断的面积是否为定值?并证明你的判断;
(3)设直线: 与曲线交于不同的两点, ,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩阵将直线l:x+y-1=0变换成直线l′.
(1)求直线l′的方程;
(2)判断矩阵A是否可逆?若可逆,求出矩阵A的逆矩阵A-1;若不可逆,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com