精英家教网 > 高中数学 > 题目详情
f(x)为奇函数当x>0,f(x)=sin2x+1,当x<0时,f(x)的解析式为(  )
A、f(x)=sin2x+1
B、f(x)=-sin2x+1
C、f(x)=-sin2x-1
D、f(x)=sin2x-1
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:设x<0,则-x>0,结合函数f(x)为奇函数,代入即可求出.
解答: 解:设x<0,则-x>0,
∴f(-x)=sin(-2x)+1=-sin2x+1=-(sin2x-1)=-f(x),
∴f(x)=sin2x-1,
故选:D.
点评:本题考查了求函数的解析式问题,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=6cos2x-2
3
sinxcosx.
(1)求f(x)的最小正周期及单调递增区间;
(2)当-
π
4
≤x≤
π
3
时,求函数f(x)的值域;
(3)将函数f(x)的图象向右平移
π
3
个单位,得y=g(x)的图象,求y=g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M={1,2},N={a2},则“N⊆M”是“a=1”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=ln0.3,b=e0.3,c=0.3e(e为无理数,e≈2.71),则a,b,c的大小关系是(  )
A、a<b<c
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
7
4
)
2-x
的定义域是(  )
A、RB、(-∞,2]
C、[2,+∞)D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

log38•log23=
 

若lna=0.2,则ln
e
a
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|a-1<x<2a+1},B={x|0<x<1},
(1)若B?A,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-x2-2x+3,x∈[-4,5]的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+1)lnx+ax2+1.
(1)讨论函数f(x)的单调性;
(2)设a<-1,若对任意x1、x2恒有|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.

查看答案和解析>>

同步练习册答案