精英家教网 > 高中数学 > 题目详情

(本题满分15分)
在平面内,已知椭圆的两个焦点为,椭圆的离心率为 ,点是椭圆上任意一点, 且
(1)求椭圆的标准方程;
(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.

(1)  (2)

解析试题分析:解:(1)由题意得 
方程为:                                  ---------------------5分
(2)设的直线方程为设,(不妨设
   ----------------------7分
 


,即,即
所以,存在3个等腰直角三角形。
直角边所在直线方程为        ………15分
注:求出的给2分
考点:本试题考查了椭圆的知识,直线与椭圆的位置关系 。
点评:解决该试题的关键是熟练运用椭圆的性质得到a,b,c的关系,进而得到其方程,同时联立方程组,结合韦达定理来求解探索性问题,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设点到直线的距离与它到定点的距离之比为,并记点的轨迹为曲线
(Ⅰ)求曲线的方程;
(Ⅱ)设,过点的直线与曲线相交于两点,当线段的中点落在由四点构成的四边形内(包括边界)时,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)过点(0,2),离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点(2,0)的直线与椭圆相交于两点,且为锐角(其中为坐标原点),求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设直线与椭圆相交于两个不同的点,与轴相交于点,记为坐标原点.
(1)证明:
(2)若的面积及椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题15分)已知点是椭圆E)上一点,F1F2分别是椭圆E的左、右焦点,O是坐标原点,PF1x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知点,△的周长为6.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设过点的直线与曲线相交于不同的两点.若点轴上,且,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)抛物线与直线相交于两点,且
(1)求的值。
(2)在抛物线上是否存在点,使得的重心恰为抛物线的焦点,若存在,求点的坐标,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于两点.
① 若直线垂直于轴,求的大小;
② 若直线轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点分别为,离心率
(1)求椭圆方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为–,求直线l倾斜角的取值范围。

查看答案和解析>>

同步练习册答案