精英家教网 > 高中数学 > 题目详情
过抛物线y2=2px(p>0)的焦点作倾斜角为30°的直线l与抛物线交于P,Q两点,分别作PP¢、QQ¢垂直于抛物线的准线于P¢、Q¢,若|PQ|=2,则四边形PP¢Q¢Q的面积为
A.1B.2C.D.3
A

试题分析:如图F(,0),直线PQ方程为y=  (x-),代入y2=2px整理得
,则="7p,"
所以
2,得。所以梯形的高为=×=1,故四边形PP¢Q¢Q的面积为=1,故选A。

点评:中档题,所得四边形是梯形,且上下底边和为PQ=2,因此,只需求梯形的高。通过联立方程组,应用韦达定理、弦长公式,达到解题目的。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,椭圆C方程为 (),点为椭圆C的左、右顶点。

(1)若椭圆C上的点到焦点的距离的最大值为3,最小值为1,求椭圆的标准方程;
(2)若直线与(1)中所述椭圆C相交于A、B两点(A、B不是左、右顶点),且满足,求证:直线过定点,并求出该点的坐标。 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列双曲线中,渐近线方程是的是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左右焦点为,弦过点,若△的内切圆周长为,点坐标分别为,则            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设已知椭圆=1(a>b>0)的一个焦点是圆x2+y2-6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为(   )
A.(-3,0)B.(-4,0)C.(-10,0)D.(-5,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设双曲线的右焦点为,左右顶点分别为,过且与双曲线的一条渐近线平行的直线与另一条渐近线相交于,若恰好在以为直径的圆上,则双曲线的离心率为________ ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

焦点为(0,6)且与双曲线有相同的渐近线的双曲线方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且

(Ⅰ)求证:直线AB过抛物线C的焦点;
(Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案