精英家教网 > 高中数学 > 题目详情

【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:

产品A(件)

产品B(件)

研制成本、搭载费用之和(万元)

20

30

计划最大资金额300万元

产品重量(千克)

10

5

最大搭载重量110千克

预计收益(万元)

80

60

试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

【答案】解:设搭载产品Ax件,产品By件,
预计总收益z=80x+60y.
,作出可行域,如图.
作出直线l0:4x+3y=0并平移,由图象得,当直线经过M点时z能取得最大值,
解得 ,即M(9,4).
所以zmax=80×9+60×4=960(万元).
答:搭载产品A9件,产品B4件,可使得总预计收益最大,为960万元.

【解析】我们可以设搭载的产品中A有x件,产品B有y件,我们不难得到关于x,y的不等式组,即约束条件和目标函数,然后根据线行规划的方法不难得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)曲线相交于两点,求过两点且面积最小的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式ax2﹣(a+2)x+2<0.
(1)当a=﹣1时,解不等式;
(2)当a∈R时,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( )

A. 720 B. 768 C. 810 D. 816

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:若x>0,则函数y=x+ 的最小值为1,命题q:若x>1,则x2+2x﹣3>0,则下列命题是真命题的是(
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C所对的边分别为a、b、c,a=
(1)求bcosC+ccosB的值;
(2)若cosA= ,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两次骰子,两个点的和不等于8的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列 是递增数列;
p4:数列{an+3nd}是递增数列;
其中真命题是(
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x2+bx+c,不等式f(x)>0的解集为(﹣∞,﹣2)∪(0,+∞).
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)+mx﹣2在(2,+∞)上单调递增,求实数m的取值范围.

查看答案和解析>>

同步练习册答案