精英家教网 > 高中数学 > 题目详情
在极坐标系中,以点(1,0)为圆心,1为半径的圆的极坐标方程是
 
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:以点(1,0)为圆心,1为半径的圆为(x-1)2+y2=1,把
x=ρcosθ
y=ρsinθ
代入即可得出.
解答: 解:以点(1,0)为圆心,1为半径的圆为(x-1)2+y2=1,
x=ρcosθ
y=ρsinθ
代入可得ρ2-2ρcosθ=0,即ρ=2cosθ.
故答案为:ρ=2cosθ.
点评:本题考查了直角坐标化为极坐标方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,已知a1=7,a2为整数,当且仅当n=4时Sn取得最大值.
(1)求数列{an}的通项公式;
(2)设bn=(9-an)•2n+1,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin2θ=1,则tanθ+
cosθ
sinθ
的值是(  )
A、2
B、-2
C、±2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,D、E、F分别是BC、CA、AB的中点,O是三角形内一点.求证:
(1)若O是△ABC的重心,则
OA
+
OB
+
OC
=0;
(2)
AD
+
BE
+
CF
=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2msinxcosx+2
2
cos2x-
2
(m>0)的最大值为2.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,若f(
A
2
-
π
8
)+f(
B
2
-
π
8
)=4
6
sinAsinB,且C=
π
3
,c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c、d为非负实数,f(x)=
ax+b
cx+d
(x∈R),且f(19)=19,f(97)=97,若x≠-
d
c
,对任意的实数x均有f(f(x))=x成立,试求出f(x)值域外的唯一数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(
π
3
+x)cos(
π
3
-x),g(x)=
1
2
sin2x-
1
4

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[
19π
24
,π]时,求函数h(x)=f(x)-g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(3-4i)•i,则|z|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A,B,C所对的边分别为a,b,c且a=1,b=
3
,b=2c•cosA,求角A.

查看答案和解析>>

同步练习册答案