精英家教网 > 高中数学 > 题目详情

【题目】某种赌博每局的规则是:赌客先在标记有12345的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1ξ2分别表示赌客在一局赌博中的赌金和奖金,则Dξ1)=_____Eξ1)﹣Eξ2)=_____

【答案】2 0.2

【解析】

分别求出随机变量ξ1ξ2的分布列,根据期望和方差公式计算得解.

ab{12345},则pξ1a,其ξ1分布列为:

ξ1

1

2

3

4

5

P

Eξ11+2+3+4+5)=3

Dξ1[132+232+332+432+532]2

ξ21.4|ab|的可能取值分别为:1.42.84.25.6

Pξ21.4Pξ22.8Pξ24.2Pξ25.6,可得分布列.

ξ2

1.4

2.8

4.2

5.6

P

Eξ2)=1.42.84.25.62.8

Eξ1)﹣Eξ2)=0.2

故答案为:20.2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

Ⅰ)若的图像在处的切线经过点(3,4),求的值;

Ⅱ)若,求证:

Ⅲ)当函数存在三个不同的零点时,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M与直线相切,且与圆N外切

1)求动圆圆心M的轨迹C的方程;

2)点O为坐标原点,过曲线C外且不在y轴上的点P作曲线C的两条切线,切点分别记为AB,当直线的斜率之积为时,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查公司员工的饮食习惯与月收入之间的关系,随机抽取了30名员工,并制作了这30人的月平均收入的频率分布直方图和饮食指数表(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).其中月收入4000元以上员工中有11人饮食指数高于70.

20

21

21

25

32

33

36

37

42

43

44

45

45

58

58

59

61

66

74

75

76

77

77

78

78

82

83

85

86

90

(1)是否有的把握认为饮食习惯与月收入有关系?若有,请说明理由,若没有,说明理由并分析原因;

(2)从饮食指数在内的员工中任选2人,求他们的饮食指数均在内的概率;

(3)经调查某地若干户家庭的年收入(万元)和年饮支出(万元)具有线性相关关系,并得到关于的回归直线方程:.若一个员工的月收入恰好为这30人的月平均收入,估计该人的年饮食支出费用.

附:.

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Ey22pxp0),焦点F到准线的距离为3,抛物线E上的两个动点Ax1y1)和Bx2y2),其中x1x2x1+x24.线段AB的垂直平分线与x轴交于点 C

1)求抛物线E的方程;

2)求ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,两座建筑物ABCD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD60°

1)求BC的长度;

2)在线段BC上取一点P(点P与点BC不重合),从点P看这两座建筑物的视角分别为∠APBα,∠DPCβ,问点P在何处时,α+β最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.

年龄

(单位:岁)

保费

(单位:元)

1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值

2之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费.某老人年龄岁,若购买该项保险(中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为.试比较的期望值大小,并判断该老人购买此项保险是否划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店经销某商品,为了解该商品的月销量y(单位:千件)与售价x(单位:元/件)之间的关系,收集5组数据进行了初步处理,得到如下数表:

x

5

6

7

8

9

y

8

6

4.5

3.5

3

1)统计学中用相关系数r来衡量两个变量之间线性相关关系的强弱,若,则认为相关性很强;若,则认为相关性一般;若,则认为相关性较弱.请根据上表数据计算yx之间相关系数r,并说明yx之间的线性相关关系的强弱(精确到0.01);

2)求y关于x的线性回归方程;

3)根据(2)中的线性回归方程,应将售价x定为多少,可获取最大的月销售金额?(月销售金额=月销售量×当月售价)

附注:

参考数据:

参考公式:相关系数

线性回归方程.

查看答案和解析>>

同步练习册答案