精英家教网 > 高中数学 > 题目详情

【题目】已知点(其中,点P的轨迹记为曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点Q在曲线上.

1)求曲线的极坐标方程和曲线的直角坐标方程;

2)当时,求曲线与曲线的公共点的极坐标

【答案】(1) , (2)

【解析】

(1) 由点(其中,可知点的轨迹曲线的参数方程为: ,化为直角坐标方程,再利用互化公式即可化为极坐标方程, Q的曲线方程为,化简得,利用互化公式即可得出结果.

(2) 直线方程与圆的方程联立解得直角坐标再化为极坐标即可得出.

1)点(其中,可知点的轨迹曲线的参数方程为: ,化为直角坐标方程为:.

展开为,化为极坐标方程:

Q的曲线方程为,化简得,化为直角坐标方程:

2)联立化为,解得,可得交点,化为极坐标

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)试讨论函数的单调性;

2)设,记,当时,若函数与函数有两个不同交点,设线段的中点为,试问s是否为的根?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线t为参数).

1)求曲线上的点到曲线距离的最小值;

2)若把上各点的横坐标都扩大到原来的2倍,纵坐标都扩大到原来的倍,得到曲线,设,曲线交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求处的切线方程:

2)已知实数时,求证:函数的图象与直线3个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,M是侧棱上一点,设

1)若,求多面体的体积;

2)若异面直线BM所成的角为,求h的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下为简化的计划生育模型:每个家庭允许生男孩最多一个,即某一胎若为男孩,则不能再生下一胎,而女孩可以多个.为方便起见,此处约定每个家庭最多可生育3个小孩,即若第一胎或前两胎为女孩,则继续生,但若第三胎还是女孩,则不能再生了.设每一胎生男生女等可能,且各次生育相互独立.依据每个家庭最多生育一个男孩的政策以及我们对生育女孩的约定,令为某一家庭所生的女孩数,为此家庭所生的男孩数.

1)求的分布列,并比较它们数学期望的大小;

2)求概率,其中的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重(单位:)情况如柱形图1所示,经过四个月的健身后,他们的体重情况如柱形图2所示.对比健身前后,关于这20名肥胖者,下面结论正确的是( )

A.他们健身后,体重在区间内的人数增加了2

B.他们健身后,体重在区间内的人数没有改变

C.因为体重在内所占比例没有发生变化,所以说明健身对体重没有任何影响

D.他们健身后,原来体重在区间内的肥胖者体重都有减少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,MNP分别是C1D1BCA1D1的中点,有下列四个结论:

APCM是异面直线;②APCMDD1相交于一点;③MNBD1

MN∥平面BB1D1D

其中所有正确结论的编号是(  )

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数存在唯一的极值点

1)求实数的取值范围;

2)若,证明:

查看答案和解析>>

同步练习册答案