精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.
(1)设点M为线段AB的中点,点N为线段CE的中点.求证:MN∥平面DAE;
(2)求证:AE⊥BE.
分析:(1)先取DE的中点P,利用N,P为中点,可以推出PN∥DC,且PN=
1
2
DC,再利用四边形ABCD是矩形,点M为线段AB的中点,可以推出
AM∥DC,且AM=
1
2
DC,故有PN∥AM,且PN=AM,?四边形AMNP是平行四边形,?MN∥AP即可证:MN∥平面DAE;
(2)先利用BC⊥平面ABE?AE⊥BC,再利用BF⊥平面ACE?AE⊥BF,可以证得AE⊥平面BCE,进而可证AE⊥BE.
解答:精英家教网证明:(1)取DE的中点P,连接PA,PN,
因为点N为线段CE的中点,
所以PN∥DC,且PN=
1
2
DC,
又四边形ABCD是矩形,点M为线段AB的中点,
所以AM∥DC,且AM=
1
2
DC,
所以PN∥AM,且PN=AM,
故四边形AMNP是平行四边形,
所以MN∥AP.
而AP?平面DAE,MN?平面DAE,
所以MN∥平面DAE.
(2)因为BC⊥平面ABE,AE?平面ABE,
所以AE⊥BC,
又BF⊥平面ACE,AE?平面ACE,
所以AE⊥BF,
又BF∩BC=B,
所以AE⊥平面BCE.
又BE?平面BCE,
所以AE⊥BE.
点评:本题考查线面平行和线线垂直.在证明线面平行时,其常用方法是在平面内找已知直线平行的直线.当然也可以用面面平行来推导线面平行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=PC=AC=1,BC=2,∠ACB=120°,AB⊥PC.
①求证:平面PAC⊥平面ABC;
②求三棱锥A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=3MB,线段CE上是否存在一点N,使得MN∥平面DAE?若存在,求出CN的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,以AB=4cm,BC=3cm的长方形ABCD为底面的长方体被平面斜着截断的几何体,EFGH是它的截面.当AE=5cm,BF=8cm,CG=12cm时,试回答下列问题:
(1)求DH的长;
(2)求这个几何体的体积;
(3)截面四边形EFGH是什么图形?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四边形ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分别是AB,PC的中点,
(1)求直线MN和AD所成角;
(2)求证:MN⊥平面PCD.

查看答案和解析>>

同步练习册答案