精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中,,若平面平面,则三棱锥外接球的表面积为_______

【答案】

【解析】

根据题意可求出点P到面ABC的距离为,而三角形ABC为直角三角形,由此可知球心O在面ABC内的射影为AC的中点,设球心O到面ABC的距离为h,根据勾股定理,即可求出h,算出外接球半径,得到外接球的表面积。

如图所示,过PPD垂直ABDPA=PB,所以DAB的中点,因为平面平面,所以PDABC,又因为,所以三棱锥外接球的球心在面ABC内的射影为AC的中点,且OEDP四点共面。

OOF垂直PDF,所以四边形OEDF为矩形。设球心O到面ABC的距离为h,即OE=FD=h,三棱锥外接球的半径为R。在等腰中,,而

,解得

表面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于 两点,直线 分别与轴交于点

(Ⅰ)求椭圆的方程;

(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,,点在棱上移动,则直线所成角的大小是__________,若,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是梯形,为边的中点.

1)求证:平面

2)求证:平面平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点.

(1)证明:平面

(2)若侧面与底面垂直,求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图所示,抛物线轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为,其它的三个边角地块每单位面积价值元.

(1)等待开垦土地的面积;

(2)如何确定点C的位置,才能使得整块土地总价值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其右焦点到直线的距离为.

1)求椭圆的方程;

2)若过作两条互相垂直的直线与椭圆的两个交点,与椭圆的两个交点,分别是线段的中点,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PA⊥平面ABCABBCPAABDPB中点,PC3PE.

1)求证:平面ADE⊥平面PBC

2)在AC上是否存在一点M,使得MB∥平面ADE?若存在,请确定点M的位置,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为为参数),交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)设点;若成等比数列,求的值

查看答案和解析>>

同步练习册答案