精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥中,四边形是菱形, ,又平面,

是棱的中点, 在棱上,且.

(1)证明:平面平面

(2)若平面,求四棱锥的体积.

【答案】(1)见解析;(2).

【解析】试题分析:(1)由平面,可证,再由底面的菱形,且点是棱的中点,可证,即可证明平面,再根据平面,即可证明平面平面;(2)连接,连接,得为平面与平面的交线,由平面,可证,根据底面是菱形,且点是棱的中点,易得,则 ,可得四棱锥的高,根据梯形的面积,即可得四棱锥的体积.

试题解析:(1)证明:∵平面 平面

,

又∵底面的菱形,且点是棱的中点

又∵

平面,

平面 平面

∴平面平面.

(2)连接,连接,则平面平面

平面

∵底面是菱形,且点是棱的中点

,

,

∵梯形的面积

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在每年的3月份,濮阳市政府都会发动市民参与到植树绿化活动中去林业管理部门为了保证树苗的质量都会在植树前对树苗进行检测,现从甲、乙两种树苗中各抽测了株树苗,量出它们的高度如下(单位:厘米),

甲:37,21,31,20,29,19,32,23,25,33;

乙:10,30,47,27,46,14,26,10,44,46.

(1)画出两组数据的茎叶图并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;

(2)设抽测的株甲种树苗高度平均值为,将这株树苗的高度依次输人,按程序框(如图)进行运算,问输出的大小为多少?并说明的统计学意义,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个几何体的主视图与左视图是全等的长方形,边长分别是,如图所示,俯视图是一个边长为的正方形.

(1)求该几何体的表面积;

(2)求该几何体的外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2)已知抛物线上一点,过点作抛物线的两条弦,且,判断直线是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且 =
(1)求异面直线MN与PC所成角的大小;
(2)求二面角N﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点上的点,满足

(1)当在圆上运动时,求点的轨迹方程;

(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆的左、右焦点分别为 也是抛物线的焦点,点在第一象限的交点,且.

(1)求的方程;

(2)平面上的点满足,直线,且与交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级进行了百科知识大赛,为了了解高二年级900名同学的比赛情况,现在甲、乙两个班级各随机抽取了10名同学的成绩,比赛成绩满分为100分,80分以上可获得二等奖,90分以上可以获得一等奖,已知抽取的两个班学生的成绩(单位:分)数据的茎叶图如图1所示:

(1)比较两组数据的分散程度(只需要给出结论),并求出甲组数据的频率分布直方图如图2中所示的值;

(2)现从两组数据中获奖的学生里分别随机抽取一人接受采访,求被抽中的甲班学生成绩高于乙班学生成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别是且有.

1)求

(2)若面积的最大值.

查看答案和解析>>

同步练习册答案