分析 (1)求出函数的导数,得到关于a,b的方程,解出即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值和最小值即可.
解答 解:(1)因f(x)=ax3+bx+12,故f'(x)=3ax2+b.
由于f(x)在点x=2处取得极值,
故有$\left\{{\begin{array}{l}{f'(2)=0}\\{f(2)=-4}\end{array}}\right.$即$\left\{{\begin{array}{l}{12a+b=0}\\{8a+2b+12=-4}\end{array}}\right.$,)
化简得$\left\{{\begin{array}{l}{12a+b=0}\\{4a+b=-8}\end{array}}\right.$解得$\left\{{\begin{array}{l}{a=1}\\{b=-12}\end{array}}\right.$
(2)由(1)知,f'(x)=3x2-12
令f'(x)=0,得x1=-2,x2=2
当x∈(-3,-2)时,f'(x)>0,故f(x)在(-∞,-2)上为增函数;
当x∈(-2,2)时,f'(x)<0,故f(x)在(-2,2)上为减函数
当x∈(2,3)时f'(x)>0,故f(x)在(2,+∞)上为增函数.
由此可知f(x)在x=-2处取得极大值f(-2)=28,f(x)在x=2处取得极小值f(2)=-4.
此时f(-3)=21,f(3)=3,
因此f(x)上[-3,3]的最大值为28.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $y=\frac{1-lnx}{x^2}$ | B. | $y=\frac{1+lnx}{x^2}$ | C. | $y=\frac{lnx-1}{x^2}$ | D. | $y=\frac{x+lnx}{x^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{5}}{5}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x-1}{{e}^{x}}$ | B. | $\frac{x+1}{{e}^{x}}$ | C. | $\frac{-x-1}{{e}^{x}}$ | D. | $\frac{1-x}{{e}^{x}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | -1或1 | C. | 2 | D. | -2或2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com