【题目】如图,已知四边形是正方形,平面,,,,,分别为,,的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面.
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,对任意的正整数,都有成立,记.
(1)求数列与数列的通项公式;
(2)记,设数列的前项和为,求证:对任意正整数,都有;
(3)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数其图象上相邻两个最高点之间的距离为
1求的值;
2将函数的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到的图象,求在上的单调增区间;
3在2的条件下,求方程在内所有实根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某测量人员为了测量西江北岸不能到达的两点,之间的距离,她在西江南岸找到一个点,从点可以观察到点,;找到一个点,从点可以观察到点,;找到一个点,从点可以观察到点,;并测量得到数据:,,,,,百米.
(1)求的面积;
(2)求,之间的距离的平方.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校微信公众号收到非常多的精彩留言,学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在之间,根据统计结果,做出频率分布直方图如下:
(1)求这100位留言者年龄的平均数和中位数;
(2)学校从参加调查的年龄在和的留言者中,按照分层抽样的方法,抽出了6人参加“精彩留言”经验交流会,赠与年龄在的留言者每人一部价值1000元的手机,年龄在的留言者每人一套价值700元的书,现要从这6人中选出3人作为代表发言,求这3位发言者所得纪念品价值超过2300元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F为抛物线C:x2=2py (p>0) 的焦点,点A(m,3)在抛物线C上,且|AF|=5,若点P是抛物线C上的一个动点,设点P到直线的距离为,设点P到直线的距离为.
(1)求抛物线C的方程;
(2) 求的最小值;
(3)求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为
(1)求频率分布图中的值,并估计该企业的职工对该部门评分不低于80的概率;
(2)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率..
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com