精英家教网 > 高中数学 > 题目详情

【题目】设函数在区间上单调递增;函数在其定义域上存在极值.

(1)若为真命题,求实数的取值范围;

(2)如果为真命题,为假命题,求实数的取值范围.

【答案】(1)(2)

【解析】

试题分析:(1)原命题等价于恒成立恒成立的取值范围为(2)求导得

在定义域单调递增,在其定义域上不存在极值,不符合题意;若,则,由为真命题,则由已知可得一真一假.

综上所述,的取值范围为

试题解析: (1)因为

所以恒成立,....................1分

因为,所以恒成立,..............3分

所以,即的取值范围为..............4分

(2)对于,..............5分

在定义域单调递增,在其定义域上不存在极值,不符合题意;........6分

,则,由,解得

所以,若为真命题,则,..............8分

因为为真命题,为假命题,所以命题一真一假,

假时,,解得

真时,,解得

综上所述,的取值范围为...................12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求证:当x>1时,f(x)>0成立;

(2)若t> ,判断函数g(x)=x[f(x)+t+1]的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.

指数

级别

类别

户外活动建议

可正常活动

轻微污染

易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.

轻度污染

中度污染

心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动.

中度重污染

重污染

健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动.

现统计邵阳市市区2016年1月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.

(1)求这60天中属轻度污染的天数;

(2)求这60天空气质量指数的平均值;

(3)一般地,当空气质量为轻度污染或轻度污染以上时才会出现雾霾天气,且此时出现雾霾天气的概率为,请根据统计数据,求在未来2天里,邵阳市恰有1天出现雾霾天气的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C为圆心的圆经过点A(1,0)B(3,4),且圆心在直线x3y150上.设点P在圆C上,求PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|(x﹣a),a为实数.

(1)若函数f(x)为奇函数,求实数a的值;

(2)若函数f(x)在[0,2]为增函数,求实数a的取值范围;

(3)是否存在实数a(a<0),使得f(x)在闭区间上的最大值为2,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如右表.

年龄

访谈

人数

愿意

使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?

(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.

(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?

年龄不低于48岁的人数

年龄低于48岁的人数

合计

愿意使用的人数

不愿意使用的人数

合计

参考公式:,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料

12月1日

12月2日

12月3日

12月4日

12月5日

温差(°C)

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验

1)求选取的2组数据恰好是不相邻2天数据的概率;

(2)若选取的是12月1日12月5日的两组数据,请根据12月2日12月4日的数据,求出y关于x的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;

②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;

③线性回归方程必经过点

④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )

A. 0

B. 1

C. 2

D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,其中为自然对数的底数.

1)求实数的值;

2)若存在,使得不等式成立,求实数的取值范围;

3)若函数上不存在最值,求实数的取值范围.

查看答案和解析>>

同步练习册答案