精英家教网 > 高中数学 > 题目详情
是两条不同的直线,是三个不同的平面.给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中正确命题的序号是(  )
A.①和②B.②和③C.③和④D.①和④
D

试题分析:对于命题①若,则,正确;对于命题②若,则平行或相交,错误;对于命题③若,则可以平行、相交、异面,错误;对于命题④若,则,正确。故选D
点评:正确掌握线面关系的平行及垂直的判定是解决此类问题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,菱形ABCD与矩形BDEF所在平面互相垂直,

(1)求证:FC∥平面AED
(2)若,当二面角为直二面角时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,一个三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过ACBCA1C1,B1C1的中点.则当底面ABC水平放置时,液面高为(       )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)如图,将∠B=,边长为1的菱形ABCD沿对角线AC折成大小等于θ的二面角BACD,若θ∈[,],MN分别为ACBD的中点,则下面的四种说法:

ACMN
DM与平面ABC所成的角是θ
③线段MN的最大值是,最小值是;
④当θ=时,BCAD所成的角等于.
其中正确的说法有    (填上所有正确说法的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面.于点,中点.

(1)用空间向量证明:AM⊥MC,平面⊥平面
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图所示是一个半圆柱与三棱柱的组合体,其中,圆柱的轴截面是边长为4的正方形,为等腰直角三角形,.

试在给出的坐标纸上画出此组合体的三视图.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面⊥平面是直角三角形,,四边形是直角梯形,其中,,且的中点,分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,在三棱柱中,点为棱的中点.

(1)求证:.
(2)若三棱柱为直三棱柱,且各棱长均为,求异面直线所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O、E分别是BD、BC的中点,

(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。

查看答案和解析>>

同步练习册答案