精英家教网 > 高中数学 > 题目详情
阅读下列材料,回答有关问题:

    2005年7月28日,BP位于美国得克萨斯市的炼油厂晚间发生爆炸,同样在7月28日,BP在其大本营英国北海的深水油田也发生了严重火灾.受其影响,全球油价7月29日再度突破60美元大关.随后沙特国王死亡引起对沙特政局的担忧,接下来一连串的飓风袭来,最后是飓风“卡特里娜”一举使油价突破70美元的大关,创下70.85美元/桶的历史记录.

    国际能源署IEA预计,到2005年底,飓风导致美国损失的原油以及天然气液化产量约1.4亿桶,成品油产量损失1.63亿桶.

    进入2006年,先是俄罗斯与乌克兰的石油管道问题,随后是基地组织将要袭击美国的威胁、尼日利亚的恐怖袭击以及伊朗的核问题不断出现,在美国气温高于往年平均气温导致需求不太旺盛的情况下,不到一个月的时间就将油价推高12美元/桶.可见突发事件对油价影响的巨大.

    在2005年原油的第二轮上涨中,基金持有的净多单数量远低于第一轮时的净多单,但是原油上涨的幅度远大于第一轮上涨的幅度,2005年9月以后基金绝大部分时间持有净空单,但是原油价格仍在高位,就是因为不断出现的突发消息助推油价.政治因素与突发事件导致的对原油供应不足的担忧,在原油上涨中可能起到20%—25%的作用.

(1)怎样理解“可见突发事件对油价影响的巨大”这句话的含义,如果是你,你将怎样得出这样的结论?

(2)为了尽量避免经济损失,我们应该怎样对经济进行统计分析?

思路分析:任何对经济问题的分析都是统计学知识的一种应用,根据各种情况的对比,对未来进行预测,首先要弄清楚有多大把握上对这种结论的肯定,这就要应用独立性检验对这些影响进行分析.

解:(1)“可见突发事件对油价影响的巨大”这句话意味着,通过对各种情况与油价的关系的分析,有很大的把握认为突发事件对油价产生了影响,这既是对过去的总结,也是对未来的预测,要得到这些结论,可以对数据进行收集,整理,再利用独立性检验分析即可.

(2)为了避免经济损失,可以经常对某些特殊情况进行分析,找出特殊情况对经济的影响,并利用独立性检验得出相应的可信度,根据这些结论对下一步的投入进行把握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•金山区二模)(1)设u、v为实数,证明:u2+v2
(u+v)2
2
;(2)请先阅读下列材料,然后根据要求回答问题.
材料:已知△LMN内接于边长为1的正三角形ABC,求证:△LMN中至少有一边的长不小于
1
2

证明:线段AN、AL、BL、BM、CM、CN的长分别设为a1、a2、b1、b2、c1、c2,设LN、LM、MN的长为x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

请利用(1)的结论,把证明过程补充完整;
(3)已知n边形A1′A2′A3′…An′内接于边长为1的正n边形A1A2…An,(n≥4),思考会有相应的什么结论?请提出一个的命题,并给与正确解答.
注意:第(3)题中所提问题单独给分,解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

(2009•金山区二模)设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=-
1
f(x)
,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+
1
2
2+
1
4

当x=-
1
2
时,u有最大值,umax=
1
4
,显然u没有最小值,
∴当x=-
1
2
时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=
f(n)
2n-1
,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设u、v为实数,证明:u2+v2数学公式;(2)请先阅读下列材料,然后根据要求回答问题.
材料:已知△LMN内接于边长为1的正三角形ABC,求证:△LMN中至少有一边的长不小于数学公式
证明:线段AN、AL、BL、BM、CM、CN的长分别设为a1、a2、b1、b2、c1、c2,设LN、LM、MN的长为x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

请利用(1)的结论,把证明过程补充完整;
(3)已知n边形A1′A2′A3′…An′内接于边长为1的正n边形A1A2…An,(n≥4),思考会有相应的什么结论?请提出一个的命题,并给与正确解答.
注意:第(3)题中所提问题单独给分,解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

科目:高中数学 来源:2009年上海市金山区高考数学二模试卷(文科)(解析版) 题型:解答题

设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+2+
当x=-时,u有最大值,umax=,显然u没有最小值,
∴当x=-时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

科目:高中数学 来源:2009年上海市金山区高考数学二模试卷(理科)(解析版) 题型:解答题

(1)设u、v为实数,证明:u2+v2;(2)请先阅读下列材料,然后根据要求回答问题.
材料:已知△LMN内接于边长为1的正三角形ABC,求证:△LMN中至少有一边的长不小于
证明:线段AN、AL、BL、BM、CM、CN的长分别设为a1、a2、b1、b2、c1、c2,设LN、LM、MN的长为x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

请利用(1)的结论,把证明过程补充完整;
(3)已知n边形A1′A2′A3′…An′内接于边长为1的正n边形A1A2…An,(n≥4),思考会有相应的什么结论?请提出一个的命题,并给与正确解答.
注意:第(3)题中所提问题单独给分,解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

同步练习册答案