精英家教网 > 高中数学 > 题目详情

【题目】金砖国家领导人第九次会晤于2017年9月3日至5日在中国福建厦门市举行,为了在金砖峰会期间为来到厦门的外国嘉宾提供服务,培训部对两千余名志愿者进行了集中培训,为了检验培训效果,现培训部从两千余名志愿者中随机抽取100名,按年龄(单位:岁)分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者前去机场参加接待外宾礼仪测试,则应从第3,4,5组中各抽取多少名志愿者?

(2)在(1)的条件下,若在第3,4组的志愿者中随机抽取2名志愿者介绍接待外宾经验感受,求第4组至少有1名志愿者被抽中的概率.

【答案】(1)应从第3,4,5组中分别抽取3名,2名,1名志愿者; (2).

【解析】试题分析:1)现有频率分布直方图,求得第组的频数,再利用分层抽样的方法得到结果;

(2)根据古典概型的概率计算公式,即可求解第4组至少有1名志愿者的概率.

试题解析:

(1)第3组的人数为

第4组的人数为

第5组的人数为.

因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽,56名志愿者,每组抽取的人数分别为,第3组: ,第4组: ,第5组: .

所以应从第3,4,5组中分别抽取3名,2名,1名志愿者.

(2)记第3组的3名志愿者分别为 ,第4组的2名志愿者分别为 ,则从透明志愿者中抽取2名志愿者的情况有 ,共10种.

其中第4组的2名志愿者 至少有1名被抽中的情况有 ,共7种.

所以第4组至少有1名志愿者被抽中的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时, ,则对任意,函数的零点个数至多有( )

A. 3个 B. 4个 C. 6个 D. 9个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的最小值;

)若函数在区间(0,1)上为单调函数,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx和g(x)=m(x2-1)(m∈R).

(1)m=1时,求方程f(x)=g(x)的实根;

(2)若对任意的x∈(1,+∞),函数y=g(x)的图象总在函数y=f(x)图象的上方,求m的取值范围;

(3)求证: +…+>ln(2n+1) (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形 的四个顶点在椭圆 上,对角线所在直线的斜率为,且 .

(1)当点为椭圆的上顶点时,求所在直线方程;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为: , ,,,,.把年龄落在区间内的人分别称为“青少年”和“中老年”.

(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数

(2)根据已知条件完成下面的2×2列联表,并判断能否有99%的把握认为关注“带一路”是否和年龄段有关?

关注

不关注

合计

青少年

15

中老年

合计

50

50

100

附:参考公式,其中

临界值表:

/td>

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查, 经统计“青少年”与“中老年”的人数之比为9:11

关注

不关注

合计

青少年

15

中老年

合计

50

50

100

(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“一带一路”是否和年龄段有关?

(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.

附:参考公式,其中

临界值表:

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若方程上有实数根求实数的取值范围

(2)若上的最小值为求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求 的值;

(2)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案