精英家教网 > 高中数学 > 题目详情
实数列a,a1,a2,a3…,由下述等式定义
(Ⅰ)若a为常数,求a1,a2,a3的值;
(Ⅱ)求依赖于a和n的an表达式;
(Ⅲ)求a的值,使得对任何正整数n总有an+1>an成立.
【答案】分析:(Ⅰ)利用,代入求解即可;
(Ⅱ)由,得,令,所以,利用叠加法,可得,从而可得结论;
(Ⅲ)先得出,再对进行分类讨论,从而可得结论.
解答:解:(Ⅰ)∵,∴a1=1-3a,a2=-1+9a,a3=7-27a…(2分)
(Ⅱ)由,得…(3分)
,所以
所以bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=
==
=,…(6分)
所以…(7分)
所以=
=…(8分)
(Ⅲ)∵
=
…(10分)
如果,利用n无限增大时,的值接近于零,对于非常大的奇数n,有an+1-an<0;
如果,对于非常大的偶数n,an+1-an<0,不满足题目要求.
时,,于是对于任何正整数n,an+1>an,因此即为所求.…(13分)
点评:本题考查数列递推式,考查数列通项的研究,考查恒成立问题,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设H(a)=-
16
[g(a)-27]
,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:正数数列an中,若关于x的方程x2-
an+1
x+
3an+2
4
=0(n∈N+)
有相等的实根
(1)若a1=1,求a2,a3的值;并证明
1
1+a1
+
1
1+a2
+…+
1
1+an
3
4

(2)若a1=a,bn=an-(3n-12)•2n,求使bn+1≥bn对一切n∈N+都成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区模拟)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中数学 来源:2010年5月湖北省襄樊五中高考数学模拟试卷(文科)(解析版) 题型:解答题

已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.

查看答案和解析>>

同步练习册答案