精英家教网 > 高中数学 > 题目详情

【题目】在三棱柱中,底面是正三角形,侧棱底面.D,E分别是边BC,AC的中点,线段交于点G,且

(1)求证:∥平面

(2)求证:⊥平面

(3)求二面角的余弦值.

【答案】1)见解析;(2)见解析;(3.

【解析】

1)证明EGAB1.然后利用直线与平面平行的判定定理证明EG∥平面AB1D

(2)取B1C1的中点D1,连接DD1.建立空间直角坐标系D-xyz,通过向量的数量积证明BC1DABC1DB1.然后证明BC1⊥平面AB1D

(3)求出平面B1CB的一个法向量,平面AB1C的一个法向量,设二面角A-B1C-B的平面角为θ,利用空间向量的数量积求解二面角的余弦函数值即可.

1)证明:因为EAC中点,GB1C中点.所以EGAB1

又因为EG平面AB1DAB1平面AB1D

所以EG∥平面AB1D

(2)证明:取B1C1的中点D1,连接DD1

显然DADCDD1两两互相垂直,如图,建立空间直角坐标系D-xyz

D000),B0-20),C020).

所以

又因为

所以BC1DABC1DB1

又因为DADB1=D,所以BC1⊥平面AB1D

(3)解:显然平面B1CB的一个法向量为=100).

设平面AB1C的一个法向量为:=xyz),

x=1,则,则

所以

设二面角A-B1C-B的平面角为θ,由图可知此二面角为锐二面角,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】两城市相距,现计划在两城市外以为直径的半圆上选择一点建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为城和城的影响度之和,记点到城的距离为,建在处的垃圾处理场对城和城的总影响度为,统计调查表明:垃圾处理场对城的影响度与所选地点到城的距离的平方成反比,比例系数为4,对城的影响度与所选地点到城的距离的平方成反比,比例系数为,当垃圾处理场建在的中点时,对城和城的总影响度为0.065

1)将表示成的函数;

2)判断上是否存在一点,使建在此处的垃圾处理场对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除元②子女教育费用:每个子女每月扣除

新个税政策的税率表部分内容如下:

级数

一级

二级

三级

四级

每月应纳税所得额(含税)

不超过元的部分

超过元至元的部分

超过元至元的部分

超过元至元的部分

税率

(1)现有李某月收入元,膝下有一名子女,需要赡养老人,(除此之外,无其它专项附加扣除)请问李某月应缴纳的个税金额为多少?

(2)现收集了某城市名年龄在岁到岁之间的公司白领的相关资料,通过整理资料可知,有一个孩子的有人,没有孩子的有人,有一个孩子的人中有人需要赡养老人,没有孩子的人中有人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的人中,任何两人均不在一个家庭).若他们的月收入均为元,试求在新个税政策下这名公司白领的月平均缴纳个税金额为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2BC=2,点MDC的中点,将△ADM沿AM折起,使得平面△ADM⊥平面ABCM

1)求证:ADBM

2)求点C到平面BDM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是( )

A. 事件“甲分得1张白牌”与事件“乙分得1张红牌”

B. 事件“甲分得1张红牌”与事件“乙分得1张蓝牌”

C. 事件“甲分得1张白牌”与事件“乙分得2张白牌”

D. 事件“甲分得2张白牌”与事件“乙分得1张黑牌”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年3月2日,昌平 “回天”地区开展了种不同类型的 “三月雷锋月,回天有我”社会服务活动. 其中有种活动既在上午开展、又在下午开展, 种活动只在上午开展,种活动只在下午开展 . 小王参加了两种不同的活动,且分别安排在上、下午,那么不同安排方案的种数是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区实施光盘行动以后,某自助啤酒吧也制定了自己的行动计划,进店的每一位客人需预交元,啤酒根据需要自己用量杯量取,结账时,根据每桌剩余酒量,按一定倍率收费(如下表),每桌剩余酒量不足升的,按升计算(如剩余升,记为剩余).例如:结账时,某桌剩余酒量恰好为升,则该桌的每位客人还应付.统计表明饮酒量与人数有很强的线性相关关系,下面是随机采集的组数据(其中表示饮酒人数,()表示饮酒量):,,,,.

剩余酒量(单位:升)

升以上(含升)

结账时的倍率

1)求由这组数据得到的关于的回归直线方程;

2)小王约了位朋友坐在一桌饮酒,小王及朋友用量杯共量取了升啤酒,这时,酒吧服务生对小王说,根据他的经验,小王和朋友量取的啤酒可能喝不完,可以考虑再邀请位或位朋友一起来饮酒,会更划算.试向小王是否该接受服务生的建议?

参考数据:回归直线的方程是,其中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为矩形,均为等边三角形,

(1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;

(2)在(1)的条件下,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某销售公司在当地两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了两家超市往年同期各50天的该食品销售记录,得到如下数据:

销售件数

8

9

10

11

频数

20

40

20

20

以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.

(1)求的分布列;

(2)以销售食品利润的期望为决策依据,在之中选其一,应选哪个?

查看答案和解析>>

同步练习册答案