精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE, ,F为线段DE上的一点.

(1)求证:平面AED⊥平面ABCD;
(2)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.

【答案】
(1)证明:∵AE⊥面CDE,CD面CDE,

∴AE⊥CD,

又∴ 是矩形,

∴AD⊥CD,∴CD⊥面AED,

又∵CD面ABCD,

∴平面AED⊥平面ABCD.


(2)解:取AD,BC的中点G,H,

连结EG,GH,EH,过F作FM||EG交AD于M,

过M作NM||HG交BC于N,连结FN,

,∴ 且EG⊥AD,

∵平面AED⊥平面ABCD,∴EG⊥面ABCD,GH⊥BC,

∴EH⊥BC,∴∠EHG就是二面角E﹣BC﹣D的平面角,

同理∠FNM就是二面角F﹣BC﹣D的平面角,

由题意得∠EHG=2∠FNM,


【解析】(1)推导出AE⊥CD,AD⊥CD,从而CD⊥面AED,由此能证明平面AED⊥平面ABCD.(2)取AD,BC的中点G,H,连结EG,GH,EH,过F作FM||EG交AD于M,过M作NM||HG交BC于N,连结FN,推导出∠EHG就是二面角E﹣BC﹣D的平面角,∠FNM就是二面角F﹣BC﹣D的平面角,由此能求出DF的长.
【考点精析】关于本题考查的平面与平面垂直的判定,需要了解一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的内角A、B、C所对的边分别为a,b,c. (Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年中国(云南赛区)三对三篮球联赛在昆明市体育局的大力支持下,圆满顺利结束.组织方统计了来自球队的男子的平均身高与本次比赛的平均得分,如下表所示:

球队

平均身高(单位:

170

174

176

181

179

平均得分(单位:分)

62

64

66

70

68

1根据表中数据,关于的线性回归方程(系数精确到);

2队平均身高为,根据(1)中所求得的回归方程,预测队的平均得分.(精确到个位)

注:回归方程中斜率和截距最小二乘估计公式分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1若曲线在点处的切线方程为,求的值

2)当时,恒成立,求满足条件的最小整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2
(1)若b+c=5,求b,c的值;
(2)若 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),则b的取值范围为(
A.
B.(2﹣ ,2+
C.[1,3]
D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差为d的等差数列{an}中,已知a1=10,5a1a3=(2a2+2)2
(1)求d和an的值;
(2)若d<0,求|a1|+|a2|+|a3|+…+|a2021|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年11月,第十一届中国(珠海)国际航空航天博览会开幕式当天,歼-20的首次亮相给观众留下了极深的印象.某参赛国展示了最新研制的两种型号的无人机,先从参观人员中随机抽取100人对这两种型号的无人机进行评价,评价分为三个等级:优秀、良好、合格.由统计信息可知,甲型号无人机被评为优秀的频率为、良好的频率为;乙型号无人机被评为优秀的频率为,且被评为良好的频率是合格的频率的5倍.

(1) 求这100人中对乙型号无人机评为优秀和良好的人数;

(2) 如果从这100人中按对甲型号无人机的评价等级用分层抽样的方法抽取5人,然后从其他对乙型号无人机评优秀、良好的人员中各选取1人进行座谈会,会后从这7人中随机抽取2人进行现场操作体验活动,求进行现场操作体验活动的2人都评优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, 是自然对数的底数).

1)当时,求曲线在点处的切线方程;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案