精英家教网 > 高中数学 > 题目详情

【题目】已知正项等比数列满足,若存在两项,使得,则的最小值为( )

A. B. C. D.

【答案】B

【解析】

{an}的公比为q(q>0),由等比数列的通项公式化简a7=a6+2a5,求出q,代入aman=16a12化简得m,n的关系式,由“1”的代换和基本不等式求出式子的范围,验证等号成立的条件,由m、n的值求出式子的最小值.

设正项等比数列{an}的公比为q,且q>0,

得:q=+

化简得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),

因为aman=16a12,所以=16a12

qm+n﹣2=16,解得m+n=6,

所以=(m+n)()=(10+)≥=

当且仅当时取等号,此时,解得

因为m n取整数,所以均值不等式等号条件取不到,则

验证可得,当m=2、n=4时,取最小值为

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数,且,则方程在区间上的所有实数根之和最接近下列哪个数( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知知矩形中,点是边上的点, 相交于点,且,现将沿折起,如图2,点的位置记为,此时.

(1)求证:

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,证明:

(2)若关于的方程有且只有一个实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面四边形ABCD为菱形,平面ABCDEBC的中点.

求证:平面PAD

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数, .

(1)试讨论函数的单调性;

(2)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中欧班列是推进与“一带一路”沿线国家道路联通、贸易畅通的重要举措,作为中欧铁路在东北地区的始发站,沈阳某火车站正在不断建设.目前车站准备在某仓库外,利用其一侧原有墙体,建造一间墙高为3米,底面为12平方米,且背面靠墙的长方体形状的保管员室.由于此保管员室的后背靠墙,无需建造费用,因此甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米150元,屋顶和地面以及其他报价共计7200元.设屋子的左右两侧墙的长度均为

(1)当左右两面墙的长度为多少时,甲工程队报价最低?

(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, , ,点为棱的中点.

(1)证明: 平面

(2)若,求三棱锥的体积.

查看答案和解析>>

同步练习册答案