【题目】已知直线l在x轴上的截距比在y轴上的截距大1,且过点(6,-2),求直线l的方程.
【答案】y=-x+2或y=-x+1.
【解析】试题分析:根据题干条件知道过点(6,-2),可设直线l的点斜式方程为y+2=k(x-6),分别求出直线的截距,在x轴上的截距比在y轴上的截距大1,故得-(-6k-2)=1,从而求出k值。
方法一:设直线l的点斜式方程为y+2=k(x-6)(k≠0).
令x=0,得y=-6k-2;令y=0,
得x=+6.
于是-(-6k-2)=1,
解得k1=-或k2=-.
故直线l的方程为y+2=- (x-6)或y+2=- (x-6),即y=-x+2或y=-x+1.
方法二:设直线l的斜截式方程为y=kx+b.
令y=0,得x=-.
依题意,得
或
故直线l的方程为y=-x+1或y=-x+2.
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1 , AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).
①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MN⊥AE;③不论D折至何位置(不在平面ABC内),都有MN∥AB;④在折起过程中,一定存在某个位置,使EC⊥AD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0 (Ⅰ)当 时,求函数f(x)的单调区间;
(Ⅱ)设函数f(x)的图象在点P(x1 , f(x1)),Q(x2 , f(x2))两处的切线分别为l1 , l2 . 若 ,且l1⊥l2 , 求实数c的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com