精英家教网 > 高中数学 > 题目详情

【题目】设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
(1)若α⊥γ,β⊥γ,则α//β;
(2)若mα,nα, , 则α//β;
(3)若α//β,lα,则l//β;
(4)若 , l//γ,则m//n.
其中正确的命题是( )
A.(1)(3)
B.(2)(3)
C.(2)(4)
D.(3)(4)

【答案】D
【解析】(1)不正确,面可能相交。(2)不正确,当直线平行时,还可能相交;根据面面平行的判定定理只有当相交时,。(3)正确,根据面面平行定义可知无公共点,即可知。(4)正确,因为 , 可知 , 又因为 , 则
综上可得D正确。
【考点精析】利用直线与平面平行的判定和平面与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;判断两平面平行的方法有三种:用定义;判定定理;垂直于同一条直线的两个平面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出x万元与销售额y万元之间有如下的对应数据:

x

2

4

5

6

8

y

30

40

60

50

70


(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为12万元时,销售收入y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知已知圆 经过 两点,且圆心C在直线 上,求解:(1)圆C的方程;(2)若直线 与圆 总有公共点,求实数 的取值范围.
(1)求圆C的方程;
(2)若直线 与圆 总有公共点,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件 时,有A1C⊥B1D1 . (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(1)求证:BF⊥平面ACFD;
(2)求直线BD与平面ACFD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.

(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣6x2+9x,g(x)= x3 x2+ax﹣ (a>1)若对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),则实数a的取值范围为(
A.(1, ]
B.[9,+∞)??
C.(1, ]∪[9,+∞)
D.[ ]∪[9,+∞)

查看答案和解析>>

同步练习册答案