精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的顶点B(﹣1,﹣3),边AB上的高CE所在直线的方程为4x+3y﹣7=0,BC边上中线AD所在的直线方程为x﹣3y﹣3=0.
(1)求点C的坐标;
(2)求直线AB的方程.

【答案】
(1)解:设D(a,b),则C(2a+1,2b+3),

解得

∴D(0,﹣1),C(1,1);


(2)解:∵CE⊥AB,且直线CE的斜率为

∴直线AB的斜率为

∴直线AB的方程为 ,即3x﹣4y﹣9=0.

,解得

∴A(3,0),

∴直线AB方程为:

化简整理得,3x﹣4y﹣9=0.


【解析】(1)设D(a,b),则C(2a+1,2b+3),联立CE与AD的方程解方程组可得点C的坐标.(2)由题意可垂直关系可得BC的斜率为﹣2,可得AB的方程为3x﹣4y﹣9=0,联立AB与AD的方程解方程组可得点A的坐标;结合A、B的坐标来求直线AB的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= + 的定义域是A,集合B={x|m≤x≤m+2}.
(1)求定义域A;
(2)若A∪B=A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若存在x1 , x2∈R,x1≠x2 , 使f(x1)=f(x2)成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个摩天轮的半径为8m,每12min旋转一周,最低点离地面为2m,若摩天轮边缘某点P从最低点按逆时针方向开始旋转,则点P离地面的距离h(m)与时间t(min)之间的函数关系是(
A.h=8cost+10
B.h=﹣8cos t+10
C.h=﹣8sin t+10
D.h=﹣8cos t+10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,D为边BC上的一点,BD=33,sinB= ,cos∠ADC= ,求AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2 , 则y=f(x)与y=log5x的图象的交点个数为(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知 ,则∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,则A=
④若a>0,b>0,a+b=2,则a2+b2≥2;
正确的序号有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F、G分别是AC、BC中点.
(1)求证:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn1(x)),则函数y=f2017(x)的图象与曲线 的交点坐标为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案