精英家教网 > 高中数学 > 题目详情

【题目】本题满分12分一块长为、宽为的长方形铁片铁片的四角截去四个边长均为的小正方形然后做成一个无盖方盒

试把方盒的容积V表示为的函数

试求方盒容积V的最大值

【答案】;(

【解析】

试题分析:方盒的下底是长为宽为的矩形方盒的高为根据方盒体积等于底面积乘以高可得关于的函数根据各边长均大于0可得其定义域. (求导令导数等于0讨论导数的正负可得函数的单调性根据函数的单调性可得函数的最值

试题解析:解:依题意折成无盖方盒的长为、宽为、高为故体积

其中常数;(5

6,(7

在定义域内列极值分布表10

x

0

fx

+

0

fx

单调增

极大值

单调减

.(12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点为圆 是圆上的动点,线段的垂直平分线交于点.

(1)求点的轨迹的方程;

2)设 过点的直线与曲线交于点(异于点),过点的直线与曲线交于点,直线倾斜角互补.

①直线的斜率是否为定值?若是,求出该定值;若不是,说明理由;

②设的面积之和为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B分别在射线CM,CN(不含端点C)上运动,∠MCN= ,在△ABC中,角A,B,C所对的边分别是a,b,c
(1)若a,b,c依次成等差数列,且公差为2,求c的值:
(2)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,
(1)求异面直线BD与B1C所成的角
(2)求证:平面ACB1⊥平面B1D1DB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 分别是的中点。

(Ⅰ)求证:

(Ⅱ)求直线和平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是矩形, 平面 分别是 的中点.

(Ⅰ)求证: ∥平面

(Ⅱ)求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .

(1)求椭圆的离心率;

(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线的斜率之积;

(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为,直线的横、纵截距分别为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ),设为圆轴负半轴的交点,过点作圆的弦,并使弦的中点恰好落在轴上.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)延长交曲线于点,曲线在点处的切线与直线交于点,试判断以点为圆心,线段长为半径的圆与直线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(﹣3,4)
(1)若l与直线y=﹣2x+5平行,求其一般式方程;
(2)若l与直线y=﹣2x+5垂直,求其一般式方程;
(3)若l与两个坐标轴的截距之和等于12,求其一般式方程.

查看答案和解析>>

同步练习册答案