【题目】(本题满分12分)一块长为、宽为的长方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒.
(Ⅰ)试把方盒的容积V表示为的函数;
(Ⅱ)试求方盒容积V的最大值.
科目:高中数学 来源: 题型:
【题目】已知点为圆, , 是圆上的动点,线段的垂直平分线交于点.
(1)求点的轨迹的方程;
(2)设, ,过点的直线与曲线交于点(异于点),过点的直线与曲线交于点,直线与倾斜角互补.
①直线的斜率是否为定值?若是,求出该定值;若不是,说明理由;
②设与的面积之和为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A,B分别在射线CM,CN(不含端点C)上运动,∠MCN= ,在△ABC中,角A,B,C所对的边分别是a,b,c
(1)若a,b,c依次成等差数列,且公差为2,求c的值:
(2)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .
(1)求椭圆的离心率;
(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线与的斜率之积;
(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为、,直线的横、纵截距分别为、,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: (),设为圆与轴负半轴的交点,过点作圆的弦,并使弦的中点恰好落在轴上.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)延长交曲线于点,曲线在点处的切线与直线交于点,试判断以点为圆心,线段长为半径的圆与直线的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过点A(﹣3,4)
(1)若l与直线y=﹣2x+5平行,求其一般式方程;
(2)若l与直线y=﹣2x+5垂直,求其一般式方程;
(3)若l与两个坐标轴的截距之和等于12,求其一般式方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com