精英家教网 > 高中数学 > 题目详情
10.集合M={x|-2≤x≤5}.
(1)若M⊆N,N={x|m-6≤x≤2m-1},求m的取值范围;
(2)若N⊆M,N={x|m+1≤x≤2m-1},求m的取值范围.

分析 (1)由题意可得m-6≤-2≤5≤2m-1,解之可得范围;
(2)由题意可得N为空集或非空,可得-2≤m+1≤2m-1≤5或m+1>2m-1,解之可得范围

解答 解:(1)若M⊆N,N={x|m-6≤x≤2m-1},
则m-6≤-2≤5≤2m-1,
解得2≤m≤4;
(2)若N⊆M,N={x|m+1≤x≤2m-1},
则-2≤m+1≤2m-1≤5或m+1>2m-1,
解得2≤m≤3或m<2,
即为m≤3.

点评 本题考查集合与集合的关系,考查不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设全集U=R,集合A={x|x<0},B={x||x|>1},则A∩(∁UB)={x|-1≤x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=x2-2x+3,则g(x)=f(2-x2)的单调增区间是(  )
A.[-1,0]及[1,+∞)B.[-$\sqrt{3}$,0]及[$\sqrt{3}$,+∞)C.(-∞,-1]及[0,1]D.(-∞,-$\sqrt{3}$]及[0,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x3+ax2-a2x+m(a>0).
(1)若a=1时函数f(x)有三个互不相同的零点,求实数m的取值范围;
(2)若对任意的a∈[3,6],不等式f(x)≤1在[-2,2]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.由曲线y=2$\sqrt{x}$,直线y=x-3及x轴所围成的图形的面积为(  )
A.12B.14C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中,真命题的是(  )
A.1弧度是一度的圆心角所对的弧
B.1弧度是长度为半径的弧
C.1弧度是一度的弧与一度的角之和
D.1弧度是长度等于半径长的弧所对的圆心角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{1}{2}$x2-9lnx在[a-1,a+1]上存在极值点,则a的取值范围是(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f(lg(x+1))的定义域为(0,99],则函数y=f[log2(x+2)]的定义域为(  )
A.(-1,2]B.(-1,3)C.(-2,1]D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+sinx+ex•cosx
(1)求该函数的导数f′(x)
(2)求函数f(x)在x=0处的切线方程.

查看答案和解析>>

同步练习册答案