精英家教网 > 高中数学 > 题目详情
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和n个黑球(n为正整数).现从甲、乙两个盒内各任取2个球,若取出的4个球均为黑球的概率为
1
5
,求
(Ⅰ)n的值;
(Ⅱ)取出的4个球中黑球个数大于红球个数的概率.



考点:古典概型及其概率计算公式
专题:概率与统计
分析:(Ⅰ)由题意知
C
2
3
•C
2
n
C
2
4
•C
2
n+2
=
1
5
,由此能求出n的值.
(Ⅱ)设“从甲盒内取出的4个球中黑球个数大于红球个数”为事件A,利用排列组合知识结合古典概型及其概率计算公式能求出P(A).
解答: 解:(Ⅰ)由题意知
C
2
3
•C
2
n
C
2
4
•C
2
n+2
=
1
5

解得n=4.
(Ⅱ)设“从甲盒内取出的4个球中黑球个数大于红球个数”为事件A,
则P(A)=
C
2
3
C
1
2
C
1
4
+
C
1
3
C
2
4
C
2
4
C
2
6
+
1
5
=
2
3

∴取出的4个球中黑球个数大于红球个数的概率为
2
3
点评:本题考查乙盒中黑球个数的求法,考查取出的4个球中黑球个数大于红球个数的概率的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆的标准方程为:(x-a-1)2+(y-b+2)2=r2其圆心坐标是(  )
A、(1,-2)
B、(-2,1)
C、(a+1,b-2)
D、(-a-1,-b+2)

查看答案和解析>>

科目:高中数学 来源: 题型:

某次围棋比赛的决赛阶段实行三番棋决定冠军归属(即三局两胜制,和棋判无效,加赛直至分出胜负).打入决赛的两名选手甲、乙平时进行过多次对弈,有记录的30局结果如下表:
  甲先 乙先
甲胜 10 9
乙胜 5 6
请根据表中的信息(用样本频率估计概率),回答下列问题:
(Ⅰ)如果比赛第一局由掷一枚硬币的方式决定谁先,试求第一局甲获胜的概率;
(Ⅱ)若第一局乙先,此后每局负者先,
 ①求甲以二比一获胜的概率;
 ②该次比赛设冠军奖金为40万元,亚军奖金为10万元,如果冠军“零封”对手(即2:0夺冠)则另加5万元.求甲队员参加此次决赛获得奖金数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),其导函数f′(x)的图象过原点.
(1)当a=1时,求函数f(x)的图象在x=3处的切线方程;
(2)若存在x<0,使得f′(x)=-9,求a的最大值;
(3)当a>-1时,确定函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a≠0,函数f(x)=ax(x-2)2(x∈R)有极大值32,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边位置;
(2)全体排成一行,男生不能排在一起;
(3)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;
(4)全体排成一行,甲、乙两人中间必须有3人.

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(π+α)=
4
5
,则sin(
π
2
-2α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x-y+3=0在y轴上的截距为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题
①已知函数f(x)=
1  (x为有理数)
0 (x为无理数)
,则f(x)为偶函数;
②将5封信投入3个邮筒,不同的投法有53种投递方法;
③函数f(x)=e-x•x2在x=2处取得极大值;
④已知函数y=f(x)的图象在M(1,f(1))处的切线方程是y=
1
2
x+2,则f(1)+f′(1)=3.
其中真命题的序号是
 
.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案