精英家教网 > 高中数学 > 题目详情

在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,
(1)证明:;
(2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.

(1)详见解析;(2),证明用数学归纳法,过程详见解析.

解析试题分析:(1)由已知可得yn是xn的一个二次函数,利用配方法,注意到就可证明;(2)由已知有该年的增长量,所以第n+1年年初的的数量xn+1=xn+yn,代入即可用 xn表示xn+1;证明草原上的野兔总数量恒小于m,即证对一切非零自然数n,都有xn<m,可考虑用数学归纳法来证明:当n=1时显然成立;再假设当时,命题成立,则对n=k+1时,由于是xk的一个二次函数,结合二次函数的性质,可证成立,从而有对一切正整数n,,即是草原上的野兔总数量恒小于m.
试题解析:(1)由题意知 ,配方得: ∵∴当且仅当时,取得最大值,即                                  (5分)
(2)                                                    (8分)
用数列归纳法证明:
当n=1时,由题意知,故命题成立
假设当时,命题成立
是xk的一个二次函数有对称轴,开口向下,由,则,于是在上均有=m
,即知,∴当时,命题成立,综上知,对一切正整数n,这就是说该草原上的野兔数量不可能无限增长                                  (13分)
考点:1函数的概念;2.二次函数;3.数学归纳法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c(a>0).
(Ⅰ)(i)若b=﹣2,且f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;
(ii)若b=﹣1,c=1,当x∈[0,1]时,|f(x)|的最大值为1,求实数a的取值范围;
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有两个小于1的不等正根,求a的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数y=f(x)的图象过点(2,),试求出此函数的解析式,并写出其定义域,判断奇偶性,单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数.
⑴当时,函数的图象与函数的图象有公共点,求实数的最大值;
⑵当时,试判断函数的图象与函数的图象的公共点的个数;
⑶函数的图象能否恒在函数的上方?若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+ax+1,f(x)在x∈[-3,1上恒有f(x)-3成立,求实数a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂生产A产品的年固定成本为250万元,若A产品的年产量为万件,则需另投入成本(万元)。已知A产品年产量不超过80万件时,;A产品年产量大于80万件时,。因设备限制,A产品年产量不超过200万件。现已知A产品的售价为50元/件,且年内生产的A产品能全部销售完。设该厂生产A产品的年利润为L(万元)。
(1)写出L关于的函数解析式
(2)当年产量为多少时,该厂生产A产品所获的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交,从而得到五边形的市民健身广场,设
(1)将五边形的面积表示为的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,若对于所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数的零点,且,则

查看答案和解析>>

同步练习册答案