精英家教网 > 高中数学 > 题目详情
16.若点 P(1,2),A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的不同的三个点,直线AP,BP的斜率分别是k1,k2,若k1+k2=0.
(1)求抛物线的方程;
(2)求y1+y2的值及直线AB的斜率k.

分析 (1)把P的坐标代入抛物线方程求得p,则抛物线方程可求;
(2)分别设出直线PA、PB的方程,和抛物线方程联立,利用根与系数的关系求出A,B的纵坐标,作和得答案;再由斜率公式求出AB的斜率,整体代入y1+y2的值求得直线AB的斜率k.

解答 解:(1)∵P(1,2)在抛物线y2=2px(p>0)上,
∴22=2p,即p=2,
∴抛物线方程为y2=4x;
(2)由题意设PA所在直线方程为y-2=k(x-1),
联立$\left\{\begin{array}{l}{y=k(x-1)+2}\\{{y}^{2}=4x}\end{array}\right.$,得ky2-4y-4k+8=0.
∴${y}_{1}+2=\frac{4}{k}$,得${y}_{1}=\frac{4}{k}-2$.
设PB所在直线方程为y-2=-k(x-1),
联立$\left\{\begin{array}{l}{y=-k(x-1)+2}\\{{y}^{2}=4x}\end{array}\right.$,得ky2+4y-4k-8=0.
∴${y}_{2}+2=-\frac{4}{k}$,得${y}_{2}=-\frac{4}{k}-2$.
∴y1+y2=-4;
${k}_{AB}=\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=\frac{{y}_{1}-{y}_{2}}{\frac{{{y}_{1}}^{2}-{{y}_{2}}^{2}}{4}}=\frac{4}{{y}_{1}+{y}_{2}}=\frac{4}{-4}=-1$.

点评 本题考查抛物线的方程,考查了直线与抛物线的关系,体现了“设而不求”的解题思想方法和整体运算思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.为了解广州环亚化妆品科技有限公司员工的月工资水平,该单位800位员工中随机取了80位进行调查.得到如图所示的频率分别直方图.

试由如图估计该单位员工的月平均工资为44百元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.现今社会对食品安全的高度重视,各级政府加强了对食品安全的检查力度.某市工商质检局抽派甲、乙两个食品质量检查组到管辖区域内的商店进行食品质量检查.如图表示甲、乙两个检查组每天检查到的食品品种数的茎叶图,则甲、乙两个检查组每天检查到的食品种数的中位数的和是58.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设向量$\overrightarrow a=(cos{23°},cos{67°}),\overrightarrow b=(cos{53°},cos{37°})$,则$\overrightarrow a•\overrightarrow b$=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列各函数的导数
(1)y=xsinx+cosx;
(2)y=3x2-x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一个算法,其流程图如图所示,则输出结果是(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=sinx+sin(x+\frac{π}{2})$.
(1)求f(x)的最小正周期、最大值及取得最大值时x的取值集合;
(2)求f(x)的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a、b、c表示不同的直线,α、β、γ表示不同的平面,则下列判断正确的是(  )
A.若a⊥c,b⊥c,则a∥bB.若α⊥γ,β⊥γ,则α∥βC.若α⊥a,β⊥a,则α∥βD.若a⊥α,b⊥a,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点A和B为抛物线y2=2px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,则点M的轨迹方程为x2+y2-2px=0(x≠0).

查看答案和解析>>

同步练习册答案