【题目】在平面直角坐标系中,椭圆的离心率为,右顶点为,直线过原点,且点在x轴的上方,直线与分别交直线:于点、.
(1)若点,求椭圆的方程及△ABC的面积;
(2)若为动点,设直线与的斜率分别为、.
①试问是否为定值?若为定值,请求出;否则,请说明理由;
②求△AEF的面积的最小值.
【答案】(1)(2)①②
【解析】
试题分析:(1)根据题意的离心率及点B的坐标,建立方程,求出a的值,即可求△ABC的面积;(2)①为定值,证明,由(1)得,即可得到结论;②设直线AB的方程为y=k1(x-a),直线AC的方程为y=k2(x-a),令x=a+1得,求出△AEF的面积,结合①的结论,利用基本不等式,可求△AEF的面积的最小值
试题解析:(1)由题意得 解得
椭圆的方程为 ……………………………………………………3分
△ABC的面积.………………………4分
(2)① 为定值,下证之:
证明:设,则,且.………………5分
而………………………7分
由离心率,得
所以,为定值.……………………………………………8分
②由直线的点斜式方程,得直线的方程为,直线的方程为. 令
,得,.
所以,△AEF的面积…………………………10分
由题意,直线的斜率. 由①,
于是,,
当且仅当,即时取等号.………………………………11分
所以,△AEF的面积的最小值为.………12分
科目:高中数学 来源: 题型:
【题目】下列结论正确的是
①在某项测量中,测量结果服从正态分布.若在内取值的概率为0.35,则在内取值的概率为0.7;
②以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程,则;
③已知命题“若函数在上是增函数,则”的逆否命题是“若,则函数在上是减函数”是真命题;
④设常数,则不等式对恒成立的充要条件是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,两点的坐标分别为,动点满足:直线与直线的斜率之积为.
(1)求动点的轨迹方程;
(2)过点作两条互相垂直的射线,与(1)的轨迹分别交于两点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线和的距离之和的最小值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 椭圆的离心率是,点在椭圆上, 设点分别是椭圆的右顶点和上顶点, 过 点引椭圆的两条弦、.
(1)求椭圆的方程;
(2)若直线与的斜率是互为相反数.
①直线的斜率是否为定值?若是求出该定值, 若不是,说明理由;
②设、的面积分别为和 ,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以边长为4的等比三角形的顶点以及边的中点为左、右焦点的椭圆过两点.
(1)求该椭圆的标准方程;
(2)过点且轴不垂直的直线交椭圆于两点,求证直线与的交点在一条直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当时,恒成立,求a的取值范围.(其中,e=2.718…为自然对数的底数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com