精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,椭圆的离心率为,右顶点为,直线过原点,且点x轴的上方,直线分别交直线于点.

1)若点,求椭圆的方程及ABC的面积;

2)若为动点,设直线的斜率分别为.

试问是否为定值?若为定值,请求出;否则,请说明理由;

AEF的面积的最小值.

【答案】12

【解析】

试题分析:(1)根据题意的离心率及点B的坐标,建立方程,求出a的值,即可求ABC的面积;(2为定值,证明,由(1)得,即可得到结论;设直线AB的方程为y=k1(x-a),直线AC的方程为y=k2(x-a),令x=a+1得,求出AEF的面积,结合的结论,利用基本不等式,可求AEF的面积的最小值

试题解析:1)由题意得 解得

椭圆的方程为 ……………………………………………………3

ABC的面积.………………………4

2 为定值,下证之:

证明:,则,且.………………5

………………………7

由离心率,得

所以,为定值.……………………………………………8

由直线的点斜式方程,得直线的方程为,直线的方程为.

,得.

所以,AEF的面积…………………………10

由题意,直线的斜率.

于是,

当且仅当,即时取等号.………………………………11

所以,AEF的面积的最小值为.………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列结论正确的是

在某项测量中,测量结果服从正态分布.若内取值的概率为0.35,则内取值的概率为0.7;

以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程,则

已知命题若函数上是增函数,则的逆否命题是,则函数上是减函数是真命题;

设常数,则不等式恒成立的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,两点的坐标分别为,动点满足:直线与直线的斜率之积为.

(1)求动点的轨迹方程;

(2)过点作两条互相垂直的射线,与1的轨迹分别交于两点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线的距离之和的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线,动点到点的距离等于它到直线的距离.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 椭圆的离心率是,点在椭圆上, 设点分别是椭圆的右顶点和上顶点, 引椭圆的两条弦.

(1)求椭圆的方程;

(2)若直线的斜率是互为相反数.

直线的斜率是否为定值?若是求出该定值, 若不是,说明理由;

的面积分别为 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线上的点到焦点的距离.

)求抛物线的方程;

)如图,直线与抛物线交于两点,点关于轴的对称点是.求证:直线恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以边长为4的等比三角形的顶点以及边的中点为左、右焦点的椭圆过两点.

1求该椭圆的标准方程;

2过点轴不垂直的直线交椭圆于两点,求证直线的交点在一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2-a-lnx,其中aR.

)讨论f(x)的单调性;

)当时,恒成立,求a的取值范围.(其中,e=2.718为自然对数的底数).

查看答案和解析>>

同步练习册答案