精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,过原点且斜率为1的直线交椭圆两点,四边形的周长与面积分别为12.

1)求椭圆的标准方程;

2)直线与圆相切,且与椭圆交于两点,求原点到的中垂线的最大距离.

【答案】12

【解析】

1)不妨设点是第一象限的点,由四边形的周长求出,面积求出关系,再由点在直线上,得到关系,代入椭圆方程,求解即可;

(2)先求出直线斜率不存在时,原点到的中垂线的距离,斜率为0与椭圆只有一个交点,直线斜率存在时,设其方程为,利用与圆相切,求出关系,直线方程与椭圆方程联立,求出中点坐标,得到的中垂线方程,进而求出原点到中垂线的距离表达式,结合关系,即可求出结论.

1)不妨设点是第一象限的点,

因为四边形的周长为12,所以

因为,所以

,点为过原点且斜率为1的直线与椭圆的交点,

即点在直线上,点在椭圆上,

所以,即

解得(舍),

所以椭圆的标准方程为.

2)当直线的斜率不存在时,直线为

线段的中垂线为轴,原点到轴的距离为0.

当直线的斜率存在时,设斜率为,依题意可设

因为直线与圆相切,所以

,联立

,得,又因为,所以

所以

所以的中点坐标为

所以的中垂线方程为

化简,得

原点到直线中垂线的距离

当且仅当,即时,等号成立,

所以原点到的中垂线的最大距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱台中,底面,四边形为菱形,.

(1)若中点,求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各对事件中,不是相互独立事件的有( )

A.运动员甲射击一次,“射中9环”与“射中8环”

B.甲乙两运动员各射击一次,“甲射中10环”与“乙射中9环”

C.甲乙两运动员各射击一次,“甲乙都射中目标”与“甲乙都没有射中目标”

D.甲乙两运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆()的离心率为,圆轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,A,B分别是椭圆C:=1(a>b>0)的左右顶点,F为其右焦点,2|AF||FB|的等差中项,|AF||FB|的等比中项.P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.

(1)求椭圆C的方程;

(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为椭圆的左、右焦点,为椭圆上一点,且.

1)求椭圆的标准方程;

2)设直线,过点的直线交椭圆于两点,线段的垂直平分线分别交直线、直线两点,当最小时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中x=1”表示2015年,x=2”表示2016年,依次类推;y表示人数)

x

1

2

3

4

5

y(万人)

20

50

100

150

180

1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;

2)该公司为了吸引网购者,特别推出玩网络游戏,送免费购物券活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在胜利大本营,则网购者可获得免费购物券500元;若遥控车最终停在失败大本营,则网购者可获得免费购物券200. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从)若掷出偶数遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.

附:在线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下面左图,在直角梯形中,,点上,且,将沿折起,得到四棱锥(如下面右图).

1)求四棱锥的体积的最大值;

2)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半正多面体(semiregular solid)亦称阿基米德多面体,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为,则该二十四等边体外接球的表面积为(

A.B.C.D.

查看答案和解析>>

同步练习册答案